








## Bonfiglioli: Specific Solutions for Power Transmission and Motion Control

Product diversification, process automation, and quality have enabled Bonfiglioli to play a leading role in the industry. Bonfiglioli's policy focuses on integrated solutions, competence and innovative technology as key factors, indispensable to ensure customer satisfaction, while production is aimed at achieving the highest standards.

Bonfiglioli product portfolio aims at meeting the toughest and most sophisticated requirement for Industrial Process and Automation Solution and for Mobile Equipment Solutions.





# 1110101010110101001101111







## Industrial equipment applications



Representing Helical, Bevel and Worm Gearmotors and Gear Units



Representing AC drives

## Mobile equipment applications



Representing Planetary Gearmotors and Gear Units

| Introduction                          | 781011701010101  |   |
|---------------------------------------|------------------|---|
|                                       | 2101010104       |   |
| Overview                              | Manager          |   |
|                                       | 0101010105/1078  |   |
| ACU201 series - Designation           | 0101010101010016 |   |
| DIPROS                                | 8                |   |
| ACU401 series - Designation           |                  |   |
| 1011103                               | 9                |   |
| Technical features                    | 310-1010         |   |
| "NI DENT                              | 10               |   |
| General technical data                | 111000           |   |
| 3077                                  | 12               | 1 |
| ACU201 - Technical data               | 7070             |   |
| 107,0110                              | 13               |   |
| ACU401 - Technical data               | 0101010101       |   |
| 1 10-101709-0                         | 15/1/01          |   |
| Inverter selection and dimensioning   | 100 000          | 1 |
| inverter selection and uniteristoning | 20               |   |
| 7849                                  |                  |   |
| Options modules                       | 101010           |   |
|                                       | 22 070           |   |
| Interface modules                     | 0010101          |   |
|                                       | 24               |   |
|                                       | 10700            | J |
|                                       | 000              |   |
|                                       |                  |   |

| Communication modules             |   |
|-----------------------------------|---|
| 0110101010100110                  |   |
| Expansion modules                 |   |
| 2101010111016                     | n |
| 11070101110                       |   |
| Engineering software              | 9 |
| VIOT010101                        |   |
| Function highlights               |   |
| 10101010                          |   |
| Automation functions and features |   |
| 2100- 01010110                    |   |
| 100710110                         |   |
| Motion functions                  |   |
| 201010101                         |   |
| Servo package                     |   |
| 170 1707                          |   |
| Mounting                          |   |
| 112-201010-                       |   |
| 10707                             |   |
| Accessories                       | Ļ |
| 9107                              |   |
| Worldwide                         |   |
| 7770                              |   |
| 0102-10170                        |   |
| 2010-10                           |   |
| 07702                             |   |
|                                   |   |
| 12 101                            |   |
| 101-01-101                        |   |





The Bonfiglioli **Active Cube** series is designed to enable you to maximize the opportunities in machine automation.

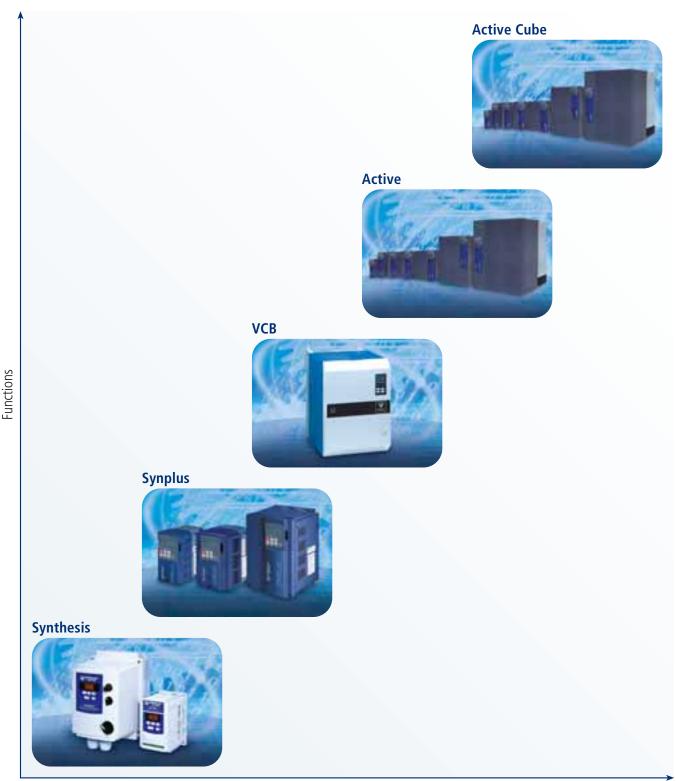
Extensive motor controls and functionality allow Active Cube to be used in the design of effective and easy automation solutions for a wide variety of industrial machinery and plants.

Outstanding performance in terms of accuracy and response time put Active Cube in the high technology end of the Bonfiglioli Vectron drives range.

The range includes both 1phase and 3phase units, 230V and 400V supply, with the 3 phase product available up to 132kW. Active Cube includes many features making it suitable for universal use, both as an effective "System drive", and also as a "Servo drive", able to fulfil the requirements of the majority of motion control applications.

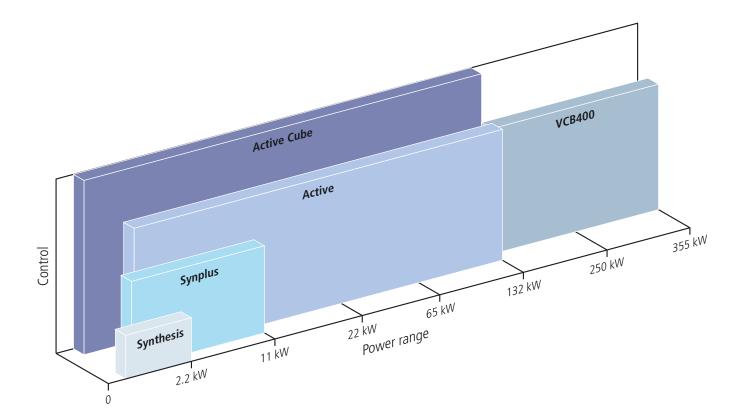
Integrated and extensive logic functions give to Active Cube users the possibility to easily and effectively re-arrange drive routines. Brand new functionality can be utilized to tailor the drive to their specific control needs, thus achieve optimal solutions.

Process and machine safety needs are catered for in Active Cube, thanks to the "safe oriented" functions included in the standard drive.


Communication with programmable logic controllers, PC's and industrial display systems is ensured by the wide set of Fieldbus protocols available, while the Bonfiglioli proprietary System bus network allows extremely fast and reliable dialogue for synchronization and/or data exchange with other Bonfiglioli drives in the system.

When considering "servo" applications, Active Cube benefits from the full compatibility with the extensive program of Bonfiglioli synchronous servomotors and accessories (BTD and BCR series), which together provide the possibility of a total Bonfiglioli "servo system".

VPlus engineering and configuration software includes advanced and effective tools for diagnostics and troubleshooting: real oscilloscope analyzer, variable monitoring window; and dashboard for most important process measures are just a few examples. Technical support is a key element in the Active Cube program, therefore your local Bonfiglioli Drive Service Centre is at your disposal to help and support your engineering department during machine and system requirements analysis, control system architecture definition, product selection and dimensioning, commissioning and start up.




## Bonfiglioli drive range



Performance










## Bonfiglioli "system" range



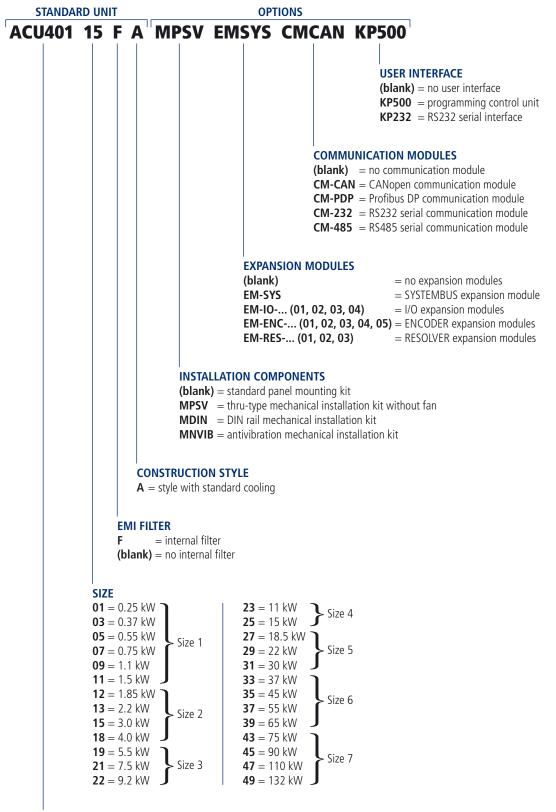
#### Note

This catalogue concerns Active Cube series and Active Cube accessories. For information about the other products showed in above overview, please refer to relevant catalogues.



## **ACU201 series – Designation**

## STANDARD UNIT **OPTIONS** ACU201 13 F A MPSV EMSYS CMCAN KP500 **USER INTERFACE (blank)** = no user interface **KP500** = programming control unit **KP232** = RS232 serial interface **COMMUNICATION MODULES (blank)** = no communication module **CM-CAN** = CANopen communication module **CM-PDP** = Profibus DP communication module **CM-232** = RS232 serial communication module **CM-485** = RS485 serial communication module **EXPANSION MODULES** = no expansion modules (blank) **EM-SYS** = SYSTEMBUS expansion module EM-IO-... (01, 02, 03, 04) = I/O expansion modules **EM-ENC-...** (01, 02, 03, 04, 05) = ENCODER expansion modules EM-RES-... (01, 02, 03) = RESOLVER expansion modules **INSTALLATION COMPONENTS** (blank) = standard panel mounting kit **MPSV** = thru-type mechanical installation kit without fan **MDIN** = DIN rail mechanical installation kit **MNVIB** = antivibration mechanical installation kit **CONSTRUCTION STYLE A** = style with standard cooling **EMI FILTER** = internal filter **(blank)** = no internal filter SIZE 01 = 0.25 kW03 = 0.37 kW05 = 0.55 kW07 = 0.75 kW09 = 1.1 kW**11** = 1,5 kW 13 = 2.2 kW**15** = 3,0 kW (only 3 ph) **18** = 4,0 kW (only 3 ph) **19** = 5,5 kW (only 3 ph) 21 = 7,5 kW (only 3 ph) 22 = 9,2 kW (only 3 ph) $\rightarrow$ Size 4


#### **INVERTER SERIES**

**ACU201** = inverter ACTIVE CUBE 1ph/3ph x 200-240 VAC +/- 10%



## **ACU401 series – Designation**

## **Active Cube** 9



#### **INVERTER SERIES**

**ACU401** = inverter ACTIVE CUBE 3ph x 360-480VAC +/- 10%



## **Technical features**

### Hardware

#### **Performance**

- High speed control loop and fast response time
- Both "system drive" and "servo drive"
- Optimized combination with Bonfiglioli BTD and BCR servomotor series

#### **Automation**

- Small dimensions and "power density" in all sizes
- "Book shape" in smaller sizes for easy integration in automation cabinets
- Integrated "safe Torque Off" function, according to EN954-1 cat.3
- External 24V supply input for control board supply from backup systems
- Motor thermal evaluation
- Position and speed feedback input (encoder/resolver)
- Several mechanical mounting modes available: Din rail mounting, pass through mounting, side mounting
- Proprietary fieldbus (System bus) for fast communication among Bonfiglioli Active Cube drives

#### **Electrical**

- Plug in control terminals for easy and fast connection
- Plug in power terminals up to 4kW
- DC link bus for "energy sharing" in multidrive system architectures
- Integral EMI filters (EN 61800-3) up to 9,2kW
- Integrated brake transistor on all sizes

#### **Options and accessories**

- Comprehensive set of optional expansion modules, to greatly increase the I/Os and feedback acquisition of the basic equipment
- Comprehensive set of optional communication modules, to connect Active Cube to control devices using industry fieldbus communication protocols
- Multifunction keypad with monitoring and programming functions
- Drive-PC connection kit for advanced configuration with engineering software VPlus
- Teleservice kit for remote diagnosis and maintenance
- Comprehensive power and control cable packs for fast and easy connection of Active Cube to Bonfiglioli BTD and BCR servomotors



### **Technical features**

## **Active Cube**

### Software

#### **Flexibility**

- Control both of asynchronous and synchronous actuators
- Full set of operation modes, freely selectable:
  - Servo synchronous control with resolver feedback
  - Field oriented (vector) control with speed/sensor
  - Sensorless field oriented (vector) control
- Flexible assignment of digital inputs and outputs to control software module variables
- "Motor chopper" function to increase braking power without brake resistors
- 4 independent data sets
- Flying restart

#### **Automation**

- Easy and powerful engineering software for parameter setting, diagnostic and aided commissioning
- Integrated powerful logic functions
- Speed and position synchronization between drives through Systembus
- Master/slave operation
- Electronic gear
- PI control with advanced derivative control
- Intelligent current limits
- Motor potentiometer control via digital input, control unit and communication interface

#### Servo

- Very accurate and reliable speed and position control
- Integrated motion software including homing functions, units converter, programmable motion blocks, to design and test even complex motion profiles
- Rotary table function
- S-ramps selection with separate adjustable acceleration/deceleration and jerk limitation
- Preset values for Bonfiglioli BTD/BCR servomotors

#### Safety

- Mains voltage monitoring and "bridging" function to overcome short time power failures
- · Overload protection and best switching frequency automatic adjustment
- Safe Torque Off function

#### **Diagnosis**

- Phase monitoring
- Mean and peak values storage

#### Advanced application functions

- Advanced brake release control (lifting applications)
- Spindle control up to 1000Hz with "tool change" positioning
- "Traverse" function for winders
- "Index" function for enhanced sensorless synchronization
- Load detection function

#### **Engineering software**

- Easy programming interface
- Real time oscilloscope and variable values monitor for enhanced troubleshooting analysis during the commissioning phase
- Effective and easy management of motion block parameters
- A simple and guided procedure for set up with Bonfiglioli servomotors
- Logic function programming section with 16 functions



## **General technical data**

### **Environment**

| Operating temperature    | 0°C - 40°C (40°C-55°C with derating)                                           |
|--------------------------|--------------------------------------------------------------------------------|
| Environment class        | Operation 3K3 (EN60721-3-3) Relative humidity 15%85%, no moisture condensation |
| Altitude of installation | Up to 1000m (up to 4000 with derating)                                         |
| Storage conditions       | According to EN50178                                                           |
| Protection degree        | IP20                                                                           |

## **Electrical**

| Rated mains voltage   | ACU201 in the range 184264V - ACU401 in the range 320528V |  |  |  |
|-----------------------|-----------------------------------------------------------|--|--|--|
| Rated mains frequency | 4566 Hz                                                   |  |  |  |
| Overload current      | 150% of rated current (200% for 0.25 and 0.37 kW)         |  |  |  |
| Peak current          | 200% of rated current for most ratings                    |  |  |  |
| Electric protection   | Short circuit / Earth fault proof                         |  |  |  |
| Braking transistor    | Built-in on standard devices                              |  |  |  |

## **Standards**

| CE conformity         | Low voltage directive 73/23/EEC and EN50178 / DIN VDE 0160 and EN61800 |
|-----------------------|------------------------------------------------------------------------|
| Interference immunity | According to EN 61800-3 for use in industrial environments             |
| UL approval           | UL marked, according to UL508c                                         |



## **ACU201 - Technical data**

# Active Cube 13

From 0.25 to 3.0 kW

|                                   |                                         |                |       |         | Size 1         |              |               |                | Size 2      |               |      |
|-----------------------------------|-----------------------------------------|----------------|-------|---------|----------------|--------------|---------------|----------------|-------------|---------------|------|
|                                   |                                         | AC             | U201- | 01      | 03             | 05           | 07            | 09             | 11          | 13            | 15   |
|                                   |                                         |                |       | F       |                |              |               | F              |             |               |      |
|                                   |                                         |                |       |         |                | Α            |               |                |             | Α             |      |
|                                   | Rated motor current output              | l <sub>n</sub> | A     | 1.6     | 2.5            | 3.0          | 4.0           | 5.5            | 7.0         | 9.5           | 12.5 |
| ide                               | Rated motor voltage output              | Un             | V     |         |                | 3            | x (from 0 to  | mains voltag   | e)          |               |      |
| otor s                            | Overload current                        | $I_{pk}$       | А     | 3.2     | 5.0            | 4.5          | 6.0           | 7.3            | 10.5        | 14.3          | 16.2 |
| Output, motor side                | Recommended rated motor power           | Pn             | kW    | 0.25    | 0.37           | 0.55         | 0.75          | 1.1            | 1.5         | 2.2           | 3.0  |
| 0                                 | Switching frequency                     | f <sub>c</sub> | kHz   |         |                |              |               |                |             |               |      |
|                                   | Rated motor frequency                   | f <sub>n</sub> | Hz    |         | From 0 to 1000 |              |               |                |             |               |      |
| Je .                              | Rated mains voltage                     | V              |       | 184 264 |                |              |               |                |             |               |      |
| Input, mains side                 | Rated mains frequency                   | f              | Hz    |         |                |              | 45 .          | 66             |             |               |      |
| put, m                            | Rated current 3 ph/PE                   | 1              | А     | 1.6     | 2.5            | 3.0          | 4.0           | 5.5            | 7.0         | 9.5           | 10.5 |
| 드                                 | Rated current<br>1 ph/N/PE; 2 ph/PE     | 1              | А     | 2.9     | 4.5            | 5.4          | 7.2           | 9.5            | 13.2        | 16.5          | 16.5 |
|                                   | Short circuit / ground fault protection | -              | -     |         | Yes, unlimited |              |               |                |             |               |      |
|                                   | Mounting position                       | -              | -     |         |                |              | Ver           | tical          |             |               |      |
| General                           | Protection class                        | -              | -     |         |                |              | IP 20 (EI     | N60529)        |             |               |      |
| Gen                               | Dimensions<br>Std. A                    | HxWxD          | mm    |         | 1              | 90 x 60 x 17 | 5             |                | 2           | 250 x 60 x 17 | 5    |
|                                   | Weight (approx.)                        | m              | kg    |         |                | 1.2          |               |                |             | 1.6           |      |
|                                   | Brake unit                              | -              |       |         |                |              | internal bra  | ke transistor  |             |               |      |
| nment                             | Cooling temperature                     | Tn             | °C    |         |                | From         | 0 to 40 (3K3  | DIN IEC 721    | -3-3)       |               |      |
| Enviror                           | Relative air humidity                   | -              | %     |         |                | Fro          | om 15 to 85,  | non-condens    | ing         |               |      |
| Options & accessories Environment | Input line choke                        | -              |       |         |                | exterr       | nal (dependin | g on mains s   | upply)      |               |      |
| & acce                            | EMI filter                              | -              |       |         |                | internal Cl  | ass A (EN 61  | 800-3); exteri | nal Class B |               |      |
| Options                           | Digital control unit                    | -              |       |         |                |              | ye            | es             |             |               |      |



## **ACU201 - Technical data**

From 4.0 to 9.2 kW

|                                   |                                         |                 |       | Siz                                                                    | ze 3              | Size 4                 |      |  |  |
|-----------------------------------|-----------------------------------------|-----------------|-------|------------------------------------------------------------------------|-------------------|------------------------|------|--|--|
|                                   |                                         | AC              | U201- | 18                                                                     | 19                | 21                     | 22   |  |  |
|                                   |                                         |                 |       |                                                                        | or F              | -                      |      |  |  |
|                                   |                                         |                 |       |                                                                        | A                 | ,                      | A    |  |  |
|                                   | Rated motor current output              | In              | Α     | 18.0                                                                   | 22.0              | 32.0                   | 35.0 |  |  |
| ide                               | Rated motor voltage output              | Un              | V     |                                                                        | 3 x (from 0 to    | mains voltage)         |      |  |  |
| otor s                            | Overload current                        | I <sub>pk</sub> | А     | 26.2                                                                   | 30.3              | 44.5                   | 51.5 |  |  |
| Output, motor side                | Recommended rated motor power           | Pn              | kW    | 4.0                                                                    | 5.5               | 7.5                    | 9.2  |  |  |
| ŏ                                 | Switching frequency                     | f <sub>c</sub>  | kHz   | From 2 to 16                                                           |                   |                        |      |  |  |
|                                   | Rated motor frequency                   | f <sub>n</sub>  | Hz    |                                                                        | From 0            | to 1000                |      |  |  |
| Ф                                 | Rated mains voltage                     | U               | V     |                                                                        | 184               | 264                    |      |  |  |
| ains sid                          | Rated mains frequency                   | f               | Hz    | 45                                                                     |                   | 66                     |      |  |  |
| Input, mains side                 | Rated current 3 ph/PE                   | 1               | А     | 18                                                                     | 20                | 28.2                   | 35.6 |  |  |
| 드                                 | Mains fuses 3 ph/PE                     | -1              | А     | ;                                                                      | 25                | 35                     | 50   |  |  |
|                                   | Short circuit / ground fault protection | -               | -     |                                                                        | Yes, u            | nlimited               |      |  |  |
|                                   | Mounting position                       | -               |       |                                                                        | Ve                | rtical                 |      |  |  |
| General                           | Protection class                        | -               |       |                                                                        | IP 20 (E          | N60529) <sup>(0)</sup> |      |  |  |
| Gen                               | Dimensions<br>Std. A                    | HxWxD           | mm    | 250 x 1                                                                | 00 x 200          | 250 x 125 x 200        |      |  |  |
|                                   | Weight (approx.)                        | m               | kg    | 3                                                                      | 3.0               | 3                      | .7   |  |  |
|                                   | Brake unit                              | -               | -     |                                                                        | internal br       | ake transistor         |      |  |  |
| ıment                             | Cooling temperature                     | Tn              | °C    |                                                                        | From 0 to 40 (3K  | 3 DIN IEC 721-3-3)     |      |  |  |
| Enviror                           | Relative air humidity                   | -               | %     | From 15 to 85, non-condensing                                          |                   |                        |      |  |  |
| Options & accessories Environment | Input line choke                        | -               | -     |                                                                        | external (dependi | ng on mains supply)    |      |  |  |
| & acce.                           | EMI filter                              | -               | -     | internal Class A (EN 61800-3); external Class B (see table on page 48) |                   |                        |      |  |  |
| Options                           | Digital control unit                    | -               | -     |                                                                        | 1                 | /es                    |      |  |  |



## ACU401 - Technical data

# **Active Cube**

From 0.25 to 3.0 kW

|                             |                                         |                |       |                                      |                               | Siz           | e 1         |               |                   |             | Size 2       |      |
|-----------------------------|-----------------------------------------|----------------|-------|--------------------------------------|-------------------------------|---------------|-------------|---------------|-------------------|-------------|--------------|------|
|                             |                                         | AC             | U401- | 01                                   | 03                            | 05            | 07          | 09            | 11                | 12          | 13           | 15   |
|                             |                                         |                |       |                                      | F                             |               |             |               |                   | F           |              |      |
|                             |                                         |                |       |                                      |                               | ,             | A           |               |                   |             | Α            |      |
|                             | Rated motor current output              | In             | Α     | 1.0                                  | 1.6                           | 1.8           | 2.4         | 3.2           | 3.8               | 4.2         | 5.8          | 7.8  |
| ide                         | Rated motor voltage output              | Un             | V     |                                      | 3 x (from 0 to mains voltage) |               |             |               |                   |             |              |      |
| notor s                     | Overload current                        | $I_{pk}$       | А     | 2.0                                  | 3.2                           | 2.7           | 3.6         | 4.8           | 5.7               | 6.3         | 8.7          | 11.7 |
| Output, motor side          | Recommended rated motor power           | Pn             | kW    | 0.25                                 | 0.37                          | 0.55          | 0.75        | 1.1           | 1.5               | 1.85        | 2.2          | 3.0  |
| 0                           | Switching frequency                     | f <sub>c</sub> | kHz   |                                      | From 2 to 16                  |               |             |               |                   |             |              |      |
|                             | Rated motor frequency                   | fn             | Hz    |                                      |                               |               | Fr          | om 0 to 100   | 00                |             |              |      |
| - De                        | Rated mains voltage                     | U              | V     |                                      |                               |               |             | 320 528       |                   |             |              |      |
| ins sid                     | Rated mains frequency                   | f              | Hz    |                                      | 45 66                         |               |             |               |                   |             |              |      |
| Input, mains side           | Rated current 3 ph/PE                   | -1             | А     | 1.0                                  | 1.6                           | 1.8           | 2.4         | 2.8           | 3.3               | 4.2         | 5.8          | 6.8  |
| 드                           | Mains fuses 3 ph/PE                     | - 1            | А     |                                      |                               | (             | ō           |               |                   |             | 10           |      |
|                             | Short circuit / ground fault protection | -              | -     |                                      | Yes, unlimited                |               |             |               |                   |             |              |      |
|                             | Mounting position                       | -              | -     |                                      |                               |               |             | Vertical      |                   |             |              |      |
| General                     | Protection class                        | -              |       |                                      |                               |               | IP 2        | 20 (EN6052)   | 9) <sup>(0)</sup> |             |              |      |
| Gen                         | Dimensions<br>Std. A                    | HxWxD          | mm    |                                      |                               | 190 x 6       | 0 x 175     |               |                   | 2           | 50 x 60 x 17 | 75   |
|                             | Weight (approx.)                        | m              | kg    |                                      |                               | 1             | .2          |               |                   |             | 1.6          |      |
|                             | Brake unit                              | -              | -     |                                      |                               |               | intern      | al brake trai | nsistor           |             |              |      |
| ronment                     | Cooling temperature                     | Tn             | °C    |                                      |                               |               | rom 0 to 40 | ) (3K3 DIN I  | EC 721-3-3        | )           |              |      |
| Enviro                      | Relative air humidity                   | -              | %     |                                      |                               |               | From 15 t   | o 85, non-c   | ondensing         |             |              |      |
| Options & accessories Envir | Input line choke                        | -              | -     | external (depending on mains supply) |                               |               |             |               |                   |             |              |      |
| s & acce                    | EMI filter                              | -              | -     |                                      | intern                        | al Class A (I | EN 61800-3  | ); external ( | Class B (see      | table on pa | ge 48)       |      |
| Option                      | Digital control unit                    | -              | -     |                                      |                               |               |             | yes           |                   |             |              |      |

 $Note: \ (0) = for \ protection \ classes \ higher \ than \ IP20 \ consult \ your \ local \ Bonfiglioli \ Drives \ Service \ Center$ 



## ACU401 - Technical data

From 4.0 to 15 kW

|   |                                                    |                                         | Size 2         |       | Size 3         |                                              | Size 4            |                        |            |          |
|---|----------------------------------------------------|-----------------------------------------|----------------|-------|----------------|----------------------------------------------|-------------------|------------------------|------------|----------|
|   |                                                    |                                         | ACI            | U401- | 18             | 19                                           | 21                | 22                     | 23         | 25       |
|   |                                                    |                                         |                |       | F              |                                              | - or F            |                        |            |          |
|   |                                                    |                                         |                |       | A              |                                              | Α                 |                        | F          | 1        |
|   |                                                    | Rated motor current output              | In             | Α     | 9.0            | 14.0                                         | 18.0              | 22.0                   | 25.0       | 32.0     |
| - | Ide                                                | Rated motor voltage output              | Un             | V     |                |                                              | 3 x (from 0 to    | mains voltage)         |            |          |
|   | otor s                                             | Overload current                        | $I_{pk}$       | А     | 13.5           | 21.0                                         | 26.3              | 30.3                   | 37.5       | 44.5     |
|   | Output, motor side                                 | Recommended rated motor power           | Pn             | kW    | 4.0            | 5.5                                          | 7.5               | 9.2                    | 11.0       | 15.0     |
| ( | วี                                                 | Switching frequency                     | f <sub>c</sub> | kHz   |                | From 2 to 16                                 |                   |                        |            |          |
|   |                                                    | Rated motor frequency                   | fn             | Hz    |                |                                              | From 0            | to 1000                |            |          |
|   | <u>a</u>                                           | Rated mains voltage                     | U              | V     |                |                                              | 320 .             | 528                    |            |          |
|   | ains sid                                           | Rated mains frequency                   | f              | Hz    |                |                                              | 45 .              | 66                     |            |          |
|   | Input, mains side                                  | Rated mains current 3 ph/PE             | - 1            | А     | 7.8            | 14.2                                         | 15.8              | 20.0                   | 26.0       | 28.2     |
| - | ⊆                                                  | Mains fuses 3ph/PE                      | I              | А     | 10.0           | 16.0                                         | 25                | 5.0                    | 35         | .0       |
|   |                                                    | Short circuit / ground fault protection | -              | -     |                |                                              | Yes, un           | limited                |            |          |
|   |                                                    | Mounting position                       | -              | -     |                |                                              | Veri              | tical                  |            |          |
| - | General                                            | Protection class                        | -              |       |                |                                              | IP 20 (EN         | 160529) <sup>(0)</sup> |            |          |
| ( | Cen                                                | Dimensions<br>Std. A                    | HxWxD          | mm    | 250 x 60 x 175 |                                              | 250 x 100 x 200   |                        | 250 x 12   | 25 x 200 |
|   |                                                    | Weight (approx.)                        | m              | kg    | 1.6            |                                              | 3.0               |                        | 3.         | 7        |
|   |                                                    | Brake unit                              | -              | -     |                |                                              | internal bra      | ke transistor          |            |          |
|   | nment                                              | Cooling temperature                     | Tn             | °C    |                | ı                                            | From 0 to 40 (3K3 | DIN IEC 721-3-3        | )          |          |
|   | Environment                                        | Relative air humidity                   | -              | %     |                |                                              | From 15 to 85,    | non-condensing         |            |          |
|   |                                                    | Input line choke                        | -              | -     |                | e                                            | xternal (dependin | g on mains supply      | <i>(</i> ) |          |
| c | Input line choke  EMI filter  Digital control unit |                                         |                |       | intern         | al Class A (EN 61800-3); external Class B ex |                   |                        | external   | Class B  |
|   | Option                                             | Digital control unit                    | -              | -     |                |                                              | ує                | es                     |            |          |



## ACU401 - Technical data

From 18.5 to 30 kW

|                             |                                         |                 |       |                                     | Size 5                            |      |  |  |  |
|-----------------------------|-----------------------------------------|-----------------|-------|-------------------------------------|-----------------------------------|------|--|--|--|
|                             |                                         | AC              | U401- | 27                                  | 29                                | 31   |  |  |  |
|                             |                                         |                 |       |                                     |                                   |      |  |  |  |
|                             | Rated motor current output              | In              | А     | 40.0                                | 45.0                              | 60.0 |  |  |  |
| de                          | Rated motor<br>voltage output           | Un              | V     |                                     | 3 x (from 0 to mains voltage)     |      |  |  |  |
| otor si                     | Overload current                        | I <sub>pk</sub> | А     | 60.0                                | 67.5                              | 90.0 |  |  |  |
| Output, motor side          | Recommended rated motor power           | P <sub>n</sub>  | kW    | 18.5                                | 22.0                              | 30.0 |  |  |  |
| 0                           | Switching frequency                     | f <sub>c</sub>  | kHz   |                                     | From 2 to 16                      |      |  |  |  |
|                             | Rated motor frequency                   | f <sub>n</sub>  | Hz    |                                     | From 0 to 1000                    |      |  |  |  |
| a                           | Rated mains voltage                     | U               | V     |                                     | 320 528                           |      |  |  |  |
| ins sid                     | Rated mains frequency                   | f               | Hz    |                                     | 45 66                             |      |  |  |  |
| Input, mains side           | Rated mains current 3 ph/PE             | 1               | Α     | 35.6                                | 52.0                              | 58.0 |  |  |  |
| 드                           | Mains fuses 3ph/PE                      | -1              | А     | 50                                  | 0.0                               | 63.0 |  |  |  |
|                             | Short circuit / ground fault protection | -               |       |                                     | Yes, unlimited                    |      |  |  |  |
|                             | Mounting position                       | -               |       |                                     | Vertical                          |      |  |  |  |
| eral                        | Protection class                        | -               |       |                                     | IP 20 (EN60529) <sup>(0)</sup>    |      |  |  |  |
| General                     | Dimensions<br>Std. A                    | HxWxD           | mm    |                                     | 250 x 200 x 260                   |      |  |  |  |
|                             | Weight (approx.)                        | m               | kg    |                                     | 8.0                               |      |  |  |  |
|                             | Brake unit                              | -               |       |                                     | internal brake transistor         |      |  |  |  |
| onment                      | Cooling temperature                     | Tn              | °C    | F                                   | From 0 to 40 (3K3 DIN IEC 721-3-3 | )    |  |  |  |
| Enviror                     | Relative air humidity                   | -               | %     | From 15 to 85, non-cond             |                                   |      |  |  |  |
| ssories                     | Input line choke                        | -               | -     | external (depending on mains supply |                                   | y)   |  |  |  |
| Options & accessories Envir | EMI filter                              | -               | -     |                                     | external Class B                  |      |  |  |  |
| Options                     | Digital control unit                    | -               | -     |                                     | yes                               |      |  |  |  |



## ACU401 - Technical data

From 37 to 65 kW

|                       |                                         |                |       | Size 6 |                    |                        |       |  |  |
|-----------------------|-----------------------------------------|----------------|-------|--------|--------------------|------------------------|-------|--|--|
|                       |                                         | AC             | U401- | 33     | 35                 | 37                     | 39    |  |  |
|                       |                                         |                |       |        |                    | -                      |       |  |  |
|                       | Rated motor                             |                |       |        |                    | <b>A</b>               |       |  |  |
|                       | current output                          | l <sub>n</sub> | Α     | 75.0   | 90.0               | 110.0                  | 125.0 |  |  |
| ide                   | Rated motor voltage output              | Un             | V     |        | 3 x (from 0 to     | mains voltage)         |       |  |  |
| otor s                | Overload current                        | $I_{pk}$       | А     | 112.5  | 135.0              | 165.0                  | 187.5 |  |  |
| Output, motor side    | Recommended rated motor power           | Pn             | kW    | 37.0   | 45.0               | 55.0                   | 65.0  |  |  |
| ŏ                     | Switching frequency                     | f <sub>c</sub> | kHz   |        | From               | 2 to 8                 |       |  |  |
|                       | Rated motor frequency                   | fn             | Hz    |        | From 0             | to 1000                |       |  |  |
| e.                    | Rated mains voltage                     | U              | V     |        | 320 .              | 528                    |       |  |  |
| ains sid              | Rated mains frequency                   | f              | Hz    |        | 45 .               | 66                     |       |  |  |
| Input, mains side     | Rated mains current 3 ph/PE             | 1              | А     | 72     | 86                 | 105                    | 120   |  |  |
| =                     | Mains fuses 3ph/PE                      | 1              | А     | 80     | 100                | 125                    | 125   |  |  |
|                       | Short circuit / ground fault protection | -              | -     |        | Yes, un            | limited                |       |  |  |
|                       | Mounting position                       | -              | -     |        | Veri               | tical                  |       |  |  |
| General               | Protection class                        | -              |       |        | IP 20 (EN          | (60529) <sup>(0)</sup> |       |  |  |
| Gen                   | Dimensions<br>Std. A                    | HxLxP          | mm    |        | 400 x 27           | 75 x 260               |       |  |  |
|                       | Weight (approx.)                        | m              | kg    |        | 2                  | 0                      |       |  |  |
|                       | Brake unit                              | -              | -     |        | internal bra       | ke transistor          |       |  |  |
| nment                 | Cooling temperature                     | Tn             | °C    |        | From 0 to 40 (3K3  | DIN IEC 721-3-3)       |       |  |  |
| Environment           | Relative air humidity                   | -              | %     |        | From 15 to 85,     | non-condensing         |       |  |  |
| ssories               | Input line choke                        | -              | -     |        | external (dependin | g on mains supply)     |       |  |  |
| Options & accessories | Brake unit                              | -              | -     |        | internal bra       | ke transistor          |       |  |  |
| Options               | Digital control unit                    | -              | -     |        | ye                 | es                     |       |  |  |



## ACU401 - Technical data

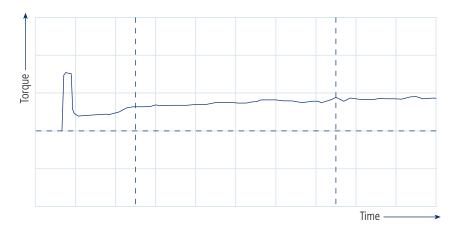
# **Active Cube** 19

From 75 to 132 kW

|                                  |                                         |                 |       |               | Si                                   | ze 7                   |       |  |  |  |
|----------------------------------|-----------------------------------------|-----------------|-------|---------------|--------------------------------------|------------------------|-------|--|--|--|
|                                  |                                         | AC              | U401- | 43            | 45                                   | 47                     | 49    |  |  |  |
|                                  |                                         |                 |       | <u>-</u><br>А |                                      |                        |       |  |  |  |
|                                  | Rated motor current output              | In              | А     | 150.0         | 180.0                                | 210.0                  | 250.0 |  |  |  |
| or side                          | Rated motor voltage output              | Un              | V     |               | 3 x (from 0 to                       | mains voltage)         |       |  |  |  |
| ., motc                          | Overload current                        | I <sub>pk</sub> | А     | 225.0         | 270.0                                | 315.0                  | 332.0 |  |  |  |
| Output, motor side               | Recommended rated motor power           | Pn              | kW    | 75.0          | 90.0                                 | 110.0                  | 132.0 |  |  |  |
|                                  | Switching frequency                     | f <sub>c</sub>  | kHz   |               | From                                 | 2 to 8                 |       |  |  |  |
|                                  | Rated motor frequency                   | f <sub>n</sub>  | Hz    |               | From 0                               | to 1000                |       |  |  |  |
| Ф                                | Rated mains voltage                     | U               | V     |               | 320                                  | 528                    |       |  |  |  |
| ins sid                          | Rated mains frequency                   | f               | Hz    |               | 45                                   | 66                     |       |  |  |  |
| Input, mains side                | Rated mains current 3 ph/PE             | 1               | A     | 143           | 172                                  | 208                    | 249   |  |  |  |
| 드                                | Mains fuses 3ph/PE                      | 1               | А     | 160           | 200                                  | 250                    | 315   |  |  |  |
|                                  | Short circuit / ground fault protection | -               | -     |               | Yes, u                               | nlimited               |       |  |  |  |
|                                  | Mounting position                       | -               | -     |               | Ve                                   | rtical                 |       |  |  |  |
| eral                             | Protection class                        | -               | -     |               | IP 20 (EI                            | N60529) <sup>(0)</sup> |       |  |  |  |
| General                          | Dimensions<br>Std. A                    | HxLxP           | mm    |               | 510 x 4                              | 12 x 351               |       |  |  |  |
|                                  | Weight (approx.)                        | m               | kg    | 4             | 5                                    | 4                      | 8     |  |  |  |
| int                              | Cooling temperature                     | Tn              | °C    |               | From 0 to 40 (3K                     | 3 DIN IEC 721-3-3)     |       |  |  |  |
| Options & accessoriesEnvironment | Relative air humidity                   | -               | %     |               | From 15 to 85,                       | non-condensing         |       |  |  |  |
| riesEnv                          | Input line choke                        | -               | -     |               | external (depending on mains supply) |                        |       |  |  |  |
| accesso                          | EMI filter                              | -               | -     |               | external Class B                     |                        |       |  |  |  |
| ons & a                          | Brake unit                              |                 | -     |               | internal bra                         | ake transistor         |       |  |  |  |
| Optic                            | Digital control unit                    | -               | -     |               | )                                    | /es                    |       |  |  |  |



## Inverter selection and dimensioning


Choosing the most suitable inverter rating according to application needs is essential to get the best out of Active Cube series. Too small a rating selection may cause unsatisfactory performance and disappointing low productivity of the machine. Selection of too high a rating may increase cost and generate problems in setting motor control.

This section gives some basic hints to determine the optimum rating and model of drive to properly match your application requirements.

Since Active Cube is able to operate both as a high technology "System drive" matched with asynchronous induction motors, and as a "Servo drive", together with synchronous servomotors, two different criteria are proposed:

#### Asynchronous induction motors (continuous load)

Active cube is driving traditional squirrel cage induction motors (e.g. Bonfiglioli M and BN series). Applications are usually featured by continuous torque supply for long time with occasional smooth overload needs. An example of typical torque profile is shown below.



In case of continuous torque, dimensioning and selection of Active Cube can be done through these steps:

- a. Check mains supply phases (1 or 3 phase) and mains supply voltage (≈230V or ≈400V) If mains voltage is 1ph-230V or 3ph-230V ⇒ ACU201 series If mains voltage is 3ph-400V ⇒ ACU401 series
- b. Check if application conditions (ambient temperature, altitude, mains values,...) are within rated conditions 

  ⇒ in case of unusual operating conditions, please refer to DSC for proper product dimensioning.
- c. Check rated motor current for continuous load I<sub>N</sub> motor (see motor plate rated current), overload motor current required I<sub>MAX</sub> motor and overload time. Select drive rating (see data sheets in "Technical data" section of this catalogue) applying, together, following conditions:
  - I<sub>N drive</sub> ≥ I<sub>N motor</sub> (rated drive current higher than rated motor current)
  - I<sub>pk</sub> ≥ I<sub>MAX motor</sub> (overload drive current higher than overload motor current)
  - **Overload time** ≤ **60secs** (overload time shorter than 60secs every 10mins)
- d. EMC protection class required
  - a. A1 ⇒ nothing required up to 9,2kW
  - b. A2 ⇒ external EMC filter required (see EMC filters in "Accessories" section of this catalogue)
  - c. B ⇒ external EMC filter required (see EMC filters in "Accessories" section of this catalogue)
- e. Input, output, feedback acquisition, communication among drives needed?
  - ⇒ Select expansion modules (see option modules in "expansion modules" section of this catalogue)
- f. Communication with other electronic devices (PLC, HMI, DCS,...) needed?
  - ⇒ Select communication modules (see option modules in "communication modules" section of this catalogue)
- g. Harmonic problems expected?
  - ⇒ Select line choke (see line choke in "Accessories" section of this catalogue)
- h. Is motor equipped with encoder or resolver feedback device? Do we need encoder emulation?

  ⇒ Select feedback module (see option modules in "expansion modules" section of this catalogue)
- i. Is braking resistor required?
  - ⇒ Select braking resistor (see braking resistor in "Accessories" section of this catalogue)




## Inverter selection and dimensioning

## **Active Cube**

#### Synchronous permanent magnets servomotors (intermittent load)

Active cube is driving high performance synchronous PM servomotors (e.g. Bonfiglioli BTD and BCR series). Applications are usually featured by intermittent very high torque demand for short time. An example of typical torque profile is shown below.



In case of intermittent torque with high peaks, the dimensioning and selection of Active CUbe, can be done through these steps:

a.Check mains supply phases (1 or 3 phase) and mains supply voltage (≈230V or ≈400V) If mains voltage is 1ph-230V or 3ph-230V ⇒ ACU201 series

If mains voltage is 3ph-400V 

⇒ ACU401 series

- b. Check if application conditions (ambient temperature, altitude, mains values,...) are within rated conditions
   ⇒ in case of unusual operating conditions, please refer to DSC for proper product dimensioning.
- c. Calculate RMS torque M<sub>RMS</sub> and relevant RMS motor current I<sub>RMS</sub> required, depending on load profile graphic of the application
- d. Calculate motor peak torque  $M_{MAX}$  out of load profile graphic of the application and resulting peak current required  $I_{MAX}$
- e. Select the drive matching together following conditions:
  - In drive ≥ IRMS motor (rated drive current higher than equivalent motor current)
  - $I_{pk drive} \ge I_{MAX motor}$  (peak drive current higher than PK motor current)
- f. Is Bonfiglioli BTD or BCR servomotor used?

Yes: ⇒ Select EMRES03 dedicated feedback module (see option modules in "expansion modules" section of this catalogue)
No: ⇒ Select feedback module (see option modules in "expansion modules" section of this catalogue)

- g. EMC protection class required
  - a. A1  $\Rightarrow$  nothing required up to 9,2kW
  - b. A2 ⇒ external EMC filter required (see EMC filters in "Accessories" section of this catalogue)
  - c. B ⇒ external EMC filter required (see EMC filters in "Accessories" section of this catalogue)
- h. Input, output, feedback acquisition, communication among drives needed?
  - ⇒ Select expansion modules (see options modules in "expansion modules" section of this catalogue)
- i. Communication with other electronic devices (PLC, HMI, DCS,...) needed?
  - ⇒ Select communication modules (see options modules in "communication modules" section of this catalogue)
- j. Harmonic problems expected?
  - ⇒ Select line choke (see line choke in "Accessories" section of this catalogue)
- k. Is braking resistor required?
  - ⇒ Select braking resistor (see braking resistor in "Accessories" section of this catalogue)



## **Options modules**

Active Cube is designed to give the highest flexibility in drive hardware to suit every control requirement. Machine designers can select from an extensive range of possible expansion hardware modules that can be fitted directly into the 3 available slots on the standard Active Cube unit. Mounting and connection is fast and easy thanks to onboard fastening devices. Using option modules, Active Cube features and integration ability can be greatly expanded: the number of possible hardware configurations that can be achieved through combinations of different modules is surprisingly high.

Build the best hardware configuration of Active Cube for your application!

#### Hardware modularity



#### Interface module

Connection of optional control unit KP500, serial interface adapter KP232, or the control unit remotization cable for accessory KPCMK



#### CM communication module

Connection panel for various communication protocols:

- CM-232, RS232 interface
- CM-485, RS485 interface
- CM-PDPV1, Profibus-DP interface
- CM-CAN, CANopen interface
- Other protocols on request



Connection panel for adaptation of control inputs and outputs to the various applications on the basis of specific customer requirements:

- EM-IO, analog and digital inputs and outputs, available in 4 variants
- EM-ENC, speed sensor interface, frequency output and system bus, available in 5 variants
- EM-RES, resolver interface, frequency output and system bus, available in 3 variants
- EM-SYS, system bus for Systembus communication (On request, system bus combined with CM-CAN communication module)
- Other customised modules available on request







## **Options modules**

## **Active Cube**

Option modules can be ordered either separately or together with ACU base unit, as an "extended" power package. The majority of Active Cube option modules can also be used in the Active series, thus allowing drives from both series to be easily used in the same automation system.

Select from below the hardware module to customize Active Cube and build a unique drive which best fits to the needs of your application.

|                                |           |                 |    |                 |                 |       |                   | Speed encoder |                      | System<br>bus |
|--------------------------------|-----------|-----------------|----|-----------------|-----------------|-------|-------------------|---------------|----------------------|---------------|
|                                |           | Al              | AO | DI              | DO              | Relay | RF                | Type (s)      | Zero pulse           | bus           |
| Basic equipment of Active Cube |           | 1 <sup>2)</sup> | -  | 6 <sup>3)</sup> | 1               | 1     | -                 | HTL           | yes                  | yes           |
| dense                          | EM-IO-01  | 1               | 1  | 3               | -               | 2     | -                 | HTL           | yes                  | yes           |
|                                | EM-IO-02  | 1               | 1  | 3               | -               | 1     | -                 | HTL           | yes                  | yes           |
| ALC: UNK                       | EM-IO-03  | 1               | 2  | 2               | -               | 1     | -                 | HTL           | no                   | yes           |
|                                | EM-IO-04  | -               | -  | 2               | 1 <sup>1)</sup> | -     | -                 | -             | -                    | yes           |
|                                | EM-ENC-01 | 1               | -  | -               | -               | -     | yes <sup>5)</sup> | TTL & HTL     | no                   | yes           |
|                                | EM-ENC-02 | 1               | 1  | -               | 1 <sup>1)</sup> | -     | -                 | TTL & HTL     | no                   | yes           |
|                                | EM-ENC-03 | -               | -  | -               | -               | -     | -                 | TTL & HTL     | no                   | yes           |
| Secretary of the last          | EM-ENC-04 | 1               | 1  | -               | -               | 1     | -                 | TTL & HTL     | yes                  | no            |
| •                              | EM-ENC-05 | 1               | 1  | -               | -               | -     | -                 | TTL & HTL     | yes                  | yes           |
|                                | EM-RES-01 | 1               | -  | -               | -               | -     | yes <sup>5)</sup> | Re            | esolver              | yes           |
|                                | EM-RES-02 | 1               | -  | -               | -               | -     | yes <sup>6)</sup> | Re            | esolver              | no            |
| 1_                             | EM-RES-03 | 1               | -  | 3               | 2               | -     | -                 | Re            | solver <sup>4)</sup> | yes           |
|                                | EM-SYS    | -               | -  | -               | -               | -     | -                 | -             | -                    | yes           |

- 1) Can be used as digital input alternatively
- 2) MFI1 can be used as digital input alternatively
- 3) One is used for control enable. DI can be used for encoder 1 if required.
- 4) EM-RES-03: Resolver and PTC are run through a DSub 9 connector.
- 5) Repetition frequency without Zero Pulse
- 6) Repetition frequency with Zero Pulse
- RF: Repetition frequency, speed sensor simulation.
- All inputs/outputs are realized with disconnectable terminals

| Communication |          |                          |  |  |  |
|---------------|----------|--------------------------|--|--|--|
|               | CM-CAN   |                          |  |  |  |
|               | CM-PDPV1 | Connectors realized with |  |  |  |
| A             | CM-485   | DSub 9 plugs             |  |  |  |
|               | CM-232   |                          |  |  |  |

| Communication |            |                    |  |  |  |
|---------------|------------|--------------------|--|--|--|
|               | CM-CAN-T   |                    |  |  |  |
|               | CM-PDPV1-T | Without connectors |  |  |  |
|               | CM-485-T   |                    |  |  |  |



## **Interface modules**

## Control unit / KP500



The KP500 control unit is equipped with a Parameters Copy function that allows the user to upload parametric values from the inverter to a non-volatile memory installed in the KP500 device, allowing the same values to be subsequently downloaded to another inverter.

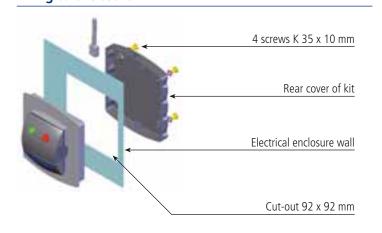
The control unit makes it possible to set up the inverter for specific applications and allows the display of the service values of physical and electrical parameters.

The inverter can also be controlled from the control unit for start/stop and frequency reference increase/decrease commands. Since the control unit is not essential for inverter operation it can be connected when the user considers it useful or necessary.

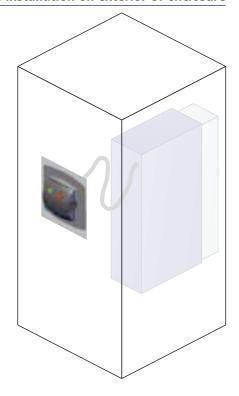


## **Interface modules**

## Control unit remote installation kit / KPCMK


The KPCMK kit is used to remotely control the inverter from the KP500 unit.




### Handheld remote control unit



## Fixing to enclosure



### Remote installation on exterior of enclosure



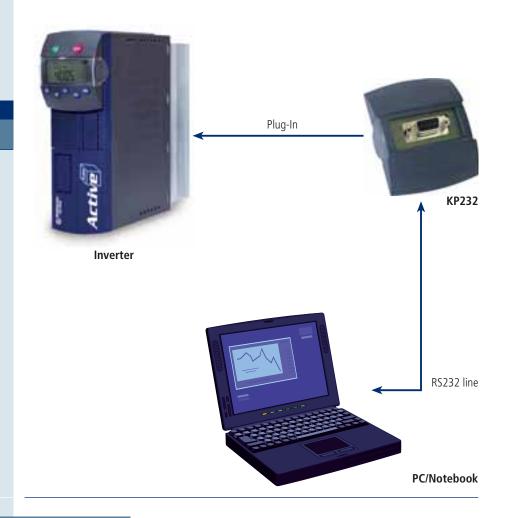


## **Interface modules**

### Interface / KP-232



Serial interface KP232 can be used as an alternative to control unit KP500. This connection enables parameterisation, monitoring, setting management, inverter control and even commissioning from a PC or laptop computer. The serial point-to-point connection between inverter and PC complies with specifications for transmission between data terminals (DTE) and data communication equipment (DCE), requiring, in this mode, a serial pin-to-pin cable with DB9 male connector on the inverter side.


The KP232 interface is compatible with lines no longer than 15 metres. The serial transmission protocol ensures high data security and does not require handshake signals between computer and inverter.

The VPlus software application can be supplied as an accessory. This program, which runs in Windows, is dedicated to the complete management of the ACTIVE CUBE inverter from a PC, including the functions of commissioning and parameterisation, which calls for the presence of hardware interface KP232, CM232 or CM485. The VPlus package also includes a digital Oscilloscope Function. The oscilloscope has four traces configurable for inverter monitoring also with graphic capabilities.

#### Technical data

Baud rate (kBaud)

Up to 115.2 kb





## **Communication modules**

## RS232 / CM-232 serial communication

The optional CM-232 communication card enables RS232 serial connection of the ACTIVE inverter to an external control device or PC to ANSI standard EIA/TIA-232E and CCITT V.28. The standard defines the electrical and mechanical characteristics of serial connections between data terminating equipment (DTE) and data communication equipment (DCE).

The serial interface, in the form of a DB9 plug, features DCE type pinouts.

The serial transmission protocol ensures high data security and allows connection, also without handshake signals, thereby reducing the required number of connection lines to just three.

Maximum allowed distance between the various bus nodes (inverters) and the master (PC, PLC) depends on the cable used and the selected transmission rate.

This option can be used as well for inverter programming and monitoring with VPlus software.

| Technical data |               |  |  |  |
|----------------|---------------|--|--|--|
| Cable lenght   | Max Baud rate |  |  |  |
| up to 30m      | 19,2 kBaud    |  |  |  |
| up to 10m      | 115,2 kBaud   |  |  |  |

Cable length limits the transmission bandwith. Above table shows the match between admissible cable lengths and corresponding max kBaud rates. Values are indicative and may significantly change in relation to the transmission cable characteristics.

The values given in the table are guideline and are subject to variations in relation to the cable characteristics.

RS232 line



Location of CM-232 module on the frequency inverter

PC/Notebook



## **Communication modules**

### RS485 / CM-485 serial communication





Location of CM-485 module on the frequency inverter

The CM-485 communication module is designed for high speed data transmission over long distances in industrial applications. RS485 bus supports data exchange among 30 nodes in a bidirectional 2-wires system.

The interface is based on a DB9 connector, following the standards for physical transmission of data ITU V.11 and ANSI EIA/TIA-422B

CM-485 communication card includes the end-of-line terminating resistor that can be activated or disconnected by means of an on-board dip switch.

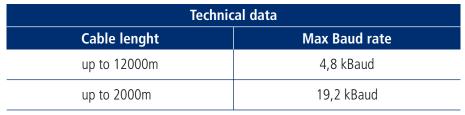
The RS485 network address of the inverter is set by software parameters either via KP500 control unit or by means of PC in serial communication with KP-232. The RS485 complies with ISO standard 1745 for code-bound data transmission. The standard data exchange rate and monitoring functions can be set using VPlus software.

| Technical data |               |  |  |  |
|----------------|---------------|--|--|--|
| Cable lenght   | Max Baud rate |  |  |  |
| up to 12000m   | 4,8 kBaud     |  |  |  |
| up to 2000m    | 19,2 kBaud    |  |  |  |

Cable length limits the transmission bandwith. Above table shows the match between admissible cable lengths and corresponding max kBaud rates. Values are indicative and may significantly change in relation to the transmission cable characteristics.



## **Communication modules**


## RS485 / CM-485 serial and Modbus communication

#### **Modbus communication**

The communication module CM-485 allows the Modbus Communication profile to be used. The communication profile can be changed to Modbus easily with a parameter. Therefore a very inexpensive solution is available to integrate the ACU inverters in a Modbus Communication environment with the standard ACU devices and a standard module.

There are two profiles available. The Modbus RTU profile is well established and known to the experienced Modbus user, which offers quick communication between different devices. Additionally, Modbus ASCII is supported as well, which allows easy set up and diagnosis of the communication between different devices.

The address range allows values between 1 to 247.



Cable length limits the transmission bandwith. Above table shows the match between admissible cable lengths and corresponding max kBaud rates. Values are indicative and may significantly change in relation to the transmission cable characteristics.







Location of CM-485 module on the frequency inverter



## **Communication modules**

## DP / CM-PDPV1 Profibus Communication



Internal dipswitch to enable the 220  $\Omega$  terminating burden resistor incorporated in the module

Profibus DP interface fulfills European fieldbus standard DIN 19245. The Profibus version, which is optimized in order to provide excellent performance in terms of speed and low connection costs, has been adapted for communication between automation systems and decentralized peripheral devices.

Following "variable speed drive" profiles defined by Profidrive for electrical drive

Following "variable speed drive" profiles defined by Profidrive for electrical drive technology are supported by CMP-DP: PPO1, PPO2, PPO3, PPO4.

CM-PDP interface supports different transmission rates in compliance with EN 50170 standard. Transmission rate automatically adjusts to the settings of the fieldbus master. CM-PDP module is equipped with a DIP switch for activating end-of-line terminating resistor, included into CM-PDP.



Location of module CM-PDP on the frequency inverter

| Technical data |               |  |  |  |
|----------------|---------------|--|--|--|
| Cable lenght   | Max Baud rate |  |  |  |
| up to 1200m    | 93,75 kBaud   |  |  |  |
| up to 1000m    | 187,5 kBaud   |  |  |  |
| up to 400m     | 500 kBaud     |  |  |  |
| up to 200m     | 1500 kBaud    |  |  |  |
| up to 100m     | 12000 kBaud   |  |  |  |

Cable length limits the transmission bandwith. Above table shows the match between admissible cable lengths and corresponding max kBaud rates. Values are indicative and may significantly change in relation to the transmission cable characteristics.



## CANopen/CM-CAN communication

The CM-CAN communication option with controller area network interface, complies with ISO/DIS 11898 transmission standard. The pinout of connector DB9 is based on the "CAN in Automation e.V." specification, which allows the connection of up to 127 nodes in the network. The network node addresses are assigned via software. The endburden resistor is activated by means of a DIP switch on the module. The end of line terminating current transmission protocol complies with CANopen specifications DS-301 V4.02. The maximum allowed distance between the bus nodes depends on the cable used and the selected transmission rate. See table.

| Technical data |               |  |  |  |
|----------------|---------------|--|--|--|
| Cable lenght   | Max Baud rate |  |  |  |
| up to 5000m    | 10 kBaud      |  |  |  |
| up to 2500m    | 20 kBaud      |  |  |  |
| up to 1000m    | 50 kBaud      |  |  |  |
| up to 800m     | 100 kBaud     |  |  |  |
| up to 500m     | 125 kBaud     |  |  |  |
| up to 250m     | 250 kBaud     |  |  |  |
| up to 100m     | 500 kBaud     |  |  |  |
| up to 25m      | 1000 kBaud    |  |  |  |

Cable length limits the transmission bandwith. Above table shows the match between admissible cable lengths and corresponding max kBaud rates. Values are indicative and may significantly change in relation to the transmission cable characteristics.



Internal dipswitch to enable the terminating resistor incorporated in the module



Location of CM-CAN module on the frequency inverter



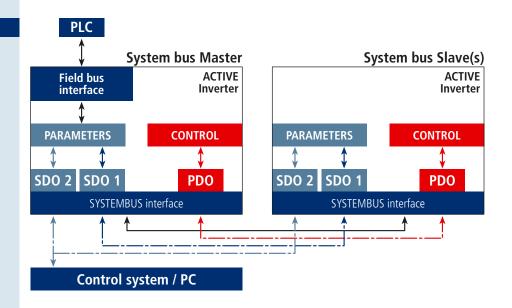
## **Expansion modules**

## System bus / EM-SYS module



The "System Bus" of ACU inverters is a proprietary communication bus, based on CANopen protocol that allows fast exchange of data between the inverters and access, by a system bus master, to the parameters of all devices connected on the network. The system bus nodes (max. 64) are connected by a two-wire line.

The Bus termination (at either first or last node) can be activated via DIP switches of the EM-SYS module.


The system bus is equipped with three PDO (Process Data Object) channels that allow rapid exchanges of process data for each inverter. There are also two SDO (Service Data Object) channels for parameterisation purposes.

Thanks to the three PDO channels with one transmission and one reception channel, all inverter data can be transmitted. Among other advantages, this makes it possible to create master/slave and daisy chain configurations easily, while ensuring very high precision and speed.



Location of EM-SYS module on the frequency inverter

Each transmission and reception channel includes 8 bytes that can be freely occupied by objects, thereby offering the maximum flexibility for a very broad range of applications. The selection of transmission objects and reception objects is made easy by the VPlus program, and no additional configuration tools are needed.



## Input-output module / EM-IO-01

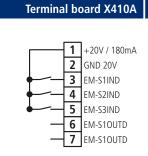
The EM-IO-01 expansion module extends the number of the standard inputs and outputs provided on the ACT inverter for connection of various applications.

Analog inputs and outputs can be available also with bipolar signals and must therefore be configured with inverter parameters.

The supplementary digital inputs provided on the expansion module are electrically equivalent to the standard inputs. The relay changer contact represents an alternative for the activation of high power to the relay output available as a standard feature. SYSTEMBUS is available on two control terminals and supports easy control of decentralised drive systems.

The module is equipped with a removable terminal board divided into two parts (X410A and X410B) that are physically separated.






Location of EM-IO-01 module on the frequency inverter

## **Terminal board layout and functions:**

| Terminal           | Function                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------|
| X410A.1            | 20 VDC power supply output (180 mA)                                                         |
| X410A.2            | 20 V power supply GND                                                                       |
| X410A.3            | EM-S1IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.4            | EM-S2IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.5            | EM-S3IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.6<br>X410A.7 | EM-S10UTD multifunction relay output, $U_{max} = 24 \text{ V}$ , 1 A (ohmic)                |

| Terminal           | Function                                                                            |
|--------------------|-------------------------------------------------------------------------------------|
| X410B.1<br>X410B.2 | EM-S2OUTD multifunction relay output, $U_{\text{max}} = 24 \text{ V}$ , 1 A (ohmic) |
| X410B.3            | EM-S1INA +/- 10 V and +/- 20 mA analog input                                        |
| X410B.4            | EM-S1OUTA +/- 10 V multifunction analog output                                      |
| X410B.5            | CAN-Low Systembus                                                                   |
| X410B.6            | CAN-High Systembus                                                                  |
| X410B.7            | GND for +/- 10 V signals                                                            |



| iermir           | ıaı k             | oa | ra X410B  |
|------------------|-------------------|----|-----------|
|                  |                   |    |           |
|                  | -[                | 1  | EM-S2OUTD |
| 10Vref 🕝         | -                 | 2  | EM-S2OUTD |
|                  | -[                | 3  | EM-S1INA  |
| ₽ <del>/</del> ( | V) <del>*</del> [ | 4  | EM-S10UTA |
|                  | $\not$            | 5  | CAN-Low   |
|                  | $\vdash$          | 6  | CAN-High  |
| L <b>-</b>       | -[                | 7  | GND 10V   |
|                  |                   |    |           |



## **Expansion modules**

## Input-output module / EM-IO-02



Like EM-IO-01, the EM-IO-02 expansion module extends the standard inputs and outputs featured on ACT frequency inverters.

The EM-IO-02 module has a slightly modified layout compared to the -01 version, featuring an input for a PTC thermal probe in place of one of the module relay outputs. The functions of all the other terminals are same as in EM-IO-01.



Location of EM-IO-02 module on the frequency inverter

## **Terminal board layout and functions:**

|            | 1 | +20V / 180mA |
|------------|---|--------------|
|            | 2 | GND 20V      |
| <b>—</b> — | 3 | EM-S1IND     |
| <b>—</b>   | 4 | EM-S2IND     |
| <u> </u>   | 5 | EM-S3IND     |
| _          | 6 | EM-S10UTD    |
| _          | 7 | EM-S10UTD    |

**Terminal board X410B** 

Terminal board X410A

| Terminal           | Function                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------|
| X410A.1            | 20 V power supply output (180 mA)                                                           |
| X410A.2            | 20 V power supply GND                                                                       |
| X410A.3            | EM-S1IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.4            | EM-S2IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.5            | EM-S3IND multifunction digital input $V_{max} = 30 \text{ V}$ (24 V/10 mA ), PLC compatible |
| X410A.6<br>X410A.7 | EM-S10UTD multifunction relay output, $U_{max} = 24 \text{ V}$ , 1 A (ohmic)                |

| PTC -    | θ         | 1 | PTC       |
|----------|-----------|---|-----------|
| 10Vref — |           | 2 | GND-PTC   |
|          |           | 3 | EM-S1INA  |
| Y        | ┌Ѡ҉       | 4 | EM-S10UTA |
|          | $\sim$    | 5 | CAN-Low   |
|          | ightarrow | 6 | CAN-High  |
| Ļ        |           | 7 | GND 10V   |

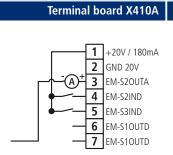
| Terminal | Function                                       |
|----------|------------------------------------------------|
| X410B.1  | Input for motor PTC                            |
| X410B.2  | GND for motor PTC                              |
| X410B.3  | EM-S1INA +/- 10 V and +/- 20 mA analog input   |
| X410B.4  | EM-S10UTA +/- 10 V multifunction analog output |
| X410B.5  | CAN-Low Systembus                              |
| X410B.6  | CAN-High Systembus                             |
| X410B.7  | GND for +/- 10 V signals                       |



# Input-output module / EM-IO-03

The EM-IO-03 expansion module is another variant for the extension of I/O facilities of ACTIVE frequency inverters.






Location of EM-IO-03 module on the frequency inverter

## **Terminal board layout and functions:**

| Terminal           | Function                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------|
| X410A.1            | 20 V DC power supply output (180 mA)                                                                        |
| X410A.2            | 20 V power supply GND                                                                                       |
| X410A.3            | EM-S2OUTA multifunction analog output 0-20 V / 4-20 mA                                                      |
| X410A.4            | EM-S2IND multifunction digital input $V_{max} = 30 \text{ V} (24 \text{ V}/10 \text{ mA})$ , PLC compatible |
| X410A.5            | EM-S3IND multifunction digital input $V_{max} = 30 \text{ V} (24 \text{ V}/10\text{mA})$ , PLC compatible   |
| X410A.6<br>X410A.7 | EM-S10UTD multifunction relay output, $U_{max} = 24 \text{ V}$ , 1 A (ohmic)                                |

| Terminal | Function                                       |
|----------|------------------------------------------------|
| Terminai | Tunction                                       |
| X410B.1  | Input for motor PTC                            |
| X410B.2  | GND for motor PTC                              |
| X410B.3  | EM-S1INA +/- 10 V and +/- 20 mA analog input   |
| X410B.4  | EM-S10UTA +/- 10 V multifunction analog output |
| X410B.5  | CAN-Low Systembus                              |
| X410B.6  | CAN-High Systembus                             |
| X410B.7  | GND                                            |

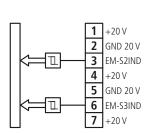


| PTC PTC  |           | 1 | PTC       |
|----------|-----------|---|-----------|
| 10Vref — |           | 2 | GND-PTC   |
|          |           | 3 | EM-S1INA  |
| ĭ        | ┌Ѡ╫       | 4 | EM-S10UTA |
|          | $\sim$    | 5 | CAN-Low   |
| V        | ightarrow | 6 | CAN-High  |
| Ļ        | -         | 7 | GND 10V   |



# **Expansion modules**

# Input-output module / EM-IO-04




The EM-IO-04 expansion module is another variant for the extension of I/O facilities of ACTIVE frequency inverters.



Location of EM-IO-04 module on the frequency inverter

## **Terminal board layout and functions:**



**Terminal board X410B** 

| Terminal | Function               |
|----------|------------------------|
| X410A.1  | Voltage output 20 V    |
| X410A.2  | Earth / GND 20 V       |
| X410A.3  | Digital input EM-S2IND |
| X410A.4  | Voltage output 20 V    |
| X410A.5  | Earth / GND 20 V       |
| X410A.6  | Digital input EM-S3IND |
| X410A.7  | Voltage output 20 V    |

|         | 1 | EM-MPTC / EM-KTY |
|---------|---|------------------|
|         | 2 |                  |
| K=>1=1= | 3 | EM-S1IOD         |
|         | 4 | GND 20 V         |
| \≒>\sys | 5 | CAN-Low          |
|         | 6 | CAN-High         |
|         | 7 | CAN GND          |

| Terminal           | Function                                                                              |
|--------------------|---------------------------------------------------------------------------------------|
| X410B.1<br>X410B.2 | Motor PTC thermistor connection EM-MPTC or connection motor temperature sensor EM-KTY |
| X410B.3            | Digital Port EM-S1IOD / Digital input or digital output                               |
| X410B.4            | Earth / GND 20 V                                                                      |
| X410B.5            | CAN-Low Systembus                                                                     |
| X410B.6            | CAN-High Systembus                                                                    |
| X410B.7            | Earth / GND                                                                           |



# Speed sensor module / EM-ENC-01

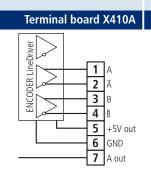
The EM-ENC-01 expansion module extends the number of speed sensor inputs of terminal board of the frequency inverter, and also increases the number of configurable pulse outputs with encoder repetition output with encoder repetition output.

EM-ENC-01 is able to acquire both TTL and HTL incremental speed sensors according to standard EIA RS422 (line driver) with 5-volt logic. The EM-ENC-01 speed sensor module is equipped with connection terminals for signals A,  $\bar{A}$ , B and  $\bar{B}$  of the line driver speed sensor and terminals for repetition output of the same signals (speed sensor emulation). This makes it possible to create master-slave configurations between several separate units using output signals of one unit as input signals of the next.

The DC +/- 10 V analog input can be used for the inverter frequency reference signal. The same terminal board also provides a DC + 5 V (200 mA) power supply for the line driver speed sensor.

As other EM expansion modules, the EM-ENC-01 features a Systembus interface.






Location of EM-ENC-01 module on the frequency inverter

#### **Terminal board layout and functions:**

| Terminal | Function                                 |
|----------|------------------------------------------|
| X410A.1  | Channel A speed sensor input             |
| X410A.2  | Channel $\bar{A}$ speed sensor input     |
| X410A.3  | Channel B speed sensor input             |
| X410A.4  | Channel B speed sensor input             |
| X410A.5  | + 5 V (200 mA) power supply output       |
| X410A.6  | 5 V power supply GND                     |
| X410A.7  | Speed sensor channel A repetition output |

| Function                                              |
|-------------------------------------------------------|
| Channel $\overline{A}$ speed sensor repetition output |
| Channel B speed sensor repetition output              |
| Channel B speed sensor repetition output              |
| EM-S1INA +/- 10 V analog input                        |
| CAN-Low Systembus                                     |
| CAN-High Systembus                                    |
| GND                                                   |
|                                                       |



|          | _ | 1_       |
|----------|---|----------|
|          | 1 | Ā out    |
|          | 2 | B out    |
| 10Vref — | 3 | ₿ out    |
| <b> </b> | 4 | EM-S1INA |
|          | 5 | CAN-Low  |
|          | 6 | CAN-High |
|          | 7 | GND      |
|          |   |          |



# **Expansion modules**

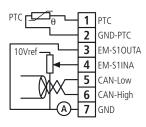
# Speed sensor module / EM-ENC-02



The EM-ENC-02 speed sensor module extends the standard terminal board of the inverter, providing an interface for line driver encoders with relative DC + 5 V power supply.

The same module is equipped also with a DC 0  $\dots$  20 mA and +/- 20 mA analog input and a DC + 20 mA analog output, together with an input for a PTC thermal probe and a digital port configurable as an input or output.

Also this module is equipped with a Systembus port.




Location of EM-ENC-02 module on the frequency inverter

## **Terminal board layout and functions:**

| Terminal board X410A |   |               |  |
|----------------------|---|---------------|--|
|                      |   |               |  |
| ENCODER LineDriver   |   |               |  |
| Li Li                | 1 | A             |  |
| #  \ <u> </u>        | 2 | Ā             |  |
|                      | 3 | В             |  |
|                      | 4 | B             |  |
|                      | 5 | +5V out       |  |
|                      | 6 | GND           |  |
| /                    | 7 | EM-S1IND/OUTD |  |

| Terminal | Function                           |
|----------|------------------------------------|
| X410A.1  | Channel A speed sensor input       |
| X410A.2  | Channel Ā speed sensor input       |
| X410A.3  | Channel B speed sensor input       |
| X410A.4  | Channel B speed sensor input       |
| X410A.5  | + 5 V (200 mA) power supply output |
| X410A.6  | 5V power supply GND                |
| X410A.7  | EM-S1IND/OUTD digital input/output |



| Terminal | Function                                     |
|----------|----------------------------------------------|
| X410B.1  | Input for motor PTC                          |
| X410B.2  | GND for motor PTC                            |
| X410B.3  | EM-S1OUTA 0 20 mA analog output              |
| X410B.4  | EM-S1INA +/- 10 V and +/- 20 mA analog input |
| X410B.5  | CAN-Low Systembus                            |
| X410B.6  | CAN-High Systembus                           |
| X410B.7  | GND                                          |



# **Expansion modules**

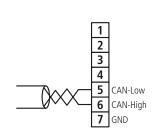
# Speed sensor module / EM-ENC-03

The EM-ENC-03 extends the standard terminal board of the inverter, providing an interface for line driver speed sensors.

Also this module is equipped with a Systembus port.






Location of EM-ENC-03 module on the frequency inverter

## **Terminal board layout and functions:**

| Terminal | Function                             |
|----------|--------------------------------------|
| X410A.1  | Channel A speed sensor input         |
| X410A.2  | Channel $\bar{A}$ speed sensor input |
| X410A.3  | Channel B speed sensor input         |
| X410A.4  | Channel B speed sensor input         |
| X410A.5  | -                                    |
| X410A.6  | GND                                  |
| X410A.7  | -                                    |

| Terminal b         | oard | X4               | 10A         |
|--------------------|------|------------------|-------------|
| ENCODER LineDriver |      | 1<br>2<br>3<br>4 | А<br>Ā<br>В |
|                    |      | 5<br>6<br>7      | GND         |

| Terminal | Function           |
|----------|--------------------|
| X410B.1  | -                  |
| X410B.2  | -                  |
| X410B.3  | -                  |
| X410B.4  | -                  |
| X410B.5  | CAN-Low Systembus  |
| X410B.6  | CAN-High Systembus |
| X410B.7  | GND                |





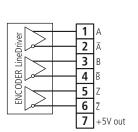
# **Expansion modules**

# Speed sensor module / EM-ENC-04



The EM-ENC-04 speed sensor module extends the standard terminal board of the inverter, providing an interface for line driver speed sensors with Z channel.

This module is able to manage TTL, HTL, or push-pull incremental speed sensors to standard EIA RS422 (line driver). The EM-ENC-04 speed encoder module is equipped with 6 control terminals for A,  $\bar{A}$ , B,  $\bar{B}$  direction signals and  $\bar{Z}$  and  $\bar{Z}$  zero signals transmitted by the speed sensor.


The same module also features  $a \pm 10 \text{ V}$  and  $\pm 20 \text{ mA}$  analog input and  $a \pm 10 \text{ V}$  voltage output in addition to a digital relay output.

The module also features two output voltages (+ 5 V and + 24 V) for the speed sensor power supply.



Location of EM-ENC-04 module on the frequency inverter

#### **Terminal board layout and functions:**



**Terminal board X410B** 

| Terminal | Function                                  |
|----------|-------------------------------------------|
| X410A.1  | Channel A speed sensor input              |
| X410A.2  | Channel $\bar{A}$ speed sensor input      |
| X410A.3  | Channel B speed sensor input              |
| X410A.4  | Channel $\overline{B}$ speed sensor input |
| X410A.5  | Channel Z speed sensor input              |
| X410A.6  | Channel Z̄ speed sensor input             |
| X410A.7  | + 5 V power supply output (200mA)         |

|   |            |          |   | Ì           |
|---|------------|----------|---|-------------|
|   |            | _        | 1 | +20V out    |
|   |            |          | 2 | GND         |
|   | ±10Vref —  | <u>,</u> | 3 | EM-S10UTA   |
|   | L I        | <b>—</b> | 4 | EM-S1INA    |
| ( | <i>?</i> 1 | _        | 5 | EM-S10UTD.1 |
|   |            |          | 6 | EM-S10UTD.2 |
|   |            |          | 7 | GND         |
|   |            |          |   |             |

| Terminal | Function                                                                     |
|----------|------------------------------------------------------------------------------|
| X410B.1  | + 20 V power supply output (180 mA)                                          |
| X410B.2  | Power supply GND                                                             |
| X410B.3  | ± 10 V analog output                                                         |
| X410B.4  | ± 10 V analog input                                                          |
| X410B.5  | EM CIOUTD multifunction relay output II 24 V 1 A (obmic)                     |
| X410B.6  | EM-S10UTD multifunction relay output, $U_{max} = 24 \text{ V}$ , 1 A (ohmic) |
| X410B.7  | GND                                                                          |



# Speed sensor module / EM-ENC-05

The EM-ENC-05 speed sensor module extends the standard terminal board of the inverter, providing an interface for line driver speed sensors with Z channel.

This module is able to manage TTL, HTL, or push-pull incremental speed sensors to standard EIA RS422 (line driver). The EM-ENC05 speed encoder module is equipped with 6 control terminals for A,  $\bar{A}$ , B,  $\bar{B}$  direction signals and  $\bar{Z}$  and  $\bar{Z}$  zero signals transmitted by the speed sensor.

The same module also features a  $\pm$  10 V and  $\pm$  20 mA analog input and a  $\pm$  10 V voltage output in addition to a digital relay output.

It is also equipped with a SYSTEMBUS communication bus.





Location of EM-ENC-05 module on the frequency inverter

### **Terminal board layout and functions:**

| Terminal | Function                                  |
|----------|-------------------------------------------|
| X410A.1  | Channel A speed sensor input              |
| X410A.2  | Channel $\bar{A}$ speed sensor input      |
| X410A.3  | Channel B speed sensor input              |
| X410A.4  | Channel B speed sensor input              |
| X410A.5  | Channel Z speed sensor input              |
| X410A.6  | Channel $\overline{Z}$ speed sensor input |
| X410A.7  | + 5 V power supply output (200mA)         |

| Terminal | Function                                     |
|----------|----------------------------------------------|
| X410B.1  | + 20 V power supply output (180 mA)          |
| X410B.2  | Power supply GND                             |
| X410B.3  | EM-S1OUTATA 0 20 mA analog output            |
| X410B.4  | EM-S1INA +/- 10 V and +/- 20 mA analog input |
| X410B.5  | CAN-Low Systembus                            |
| X410B.6  | CAN-High Systembus                           |
| X410B.7  | GND                                          |

# Terminal board X410A

|          | 1 | +20V out  |
|----------|---|-----------|
|          | 2 | GND       |
| 10Vref — | 3 | EM-S10UTA |
| <b>←</b> | 4 | EM-S1INA  |
|          | 5 | CAN-Low   |
|          | 6 | CAN-High  |
|          | 7 | GND       |



# **Expansion modules**

### Resolver Module / EM-RES-01



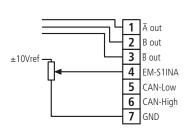
The EM-RES-01 angular position transducer module extends the standard functions of the frequency inverter by providing a supplementary input for a resolver (electromechanical absolute speed sensor).

Resolver gives the instantaneous motor shaft position value even at standstill, and its angular position within a revolution.

EM-RES-01 provides 6 terminals for connection of the two sinØ and cosØ track signals generated by the transducer and also carry the resolver power supply voltage.

The module EM-RES-01 also supplies an output signal emulating a digital incremental speed sensor through the generation of squarewave signals A,  $\bar{A}$ , B,  $\bar{B}$ , which can be used for shaft synchronisation of any connected slave inverters.

The EM-S1INA multifunction analog input ( $\pm$  10 V or  $\pm$  20 mA) extends the standard functions of the ACT frequency inverter.




Location of EM-RES-01 module on the frequency inverter

## **Terminal board layout and functions:**

# Terminal board X410A 1 +V<sub>REF</sub> out -V<sub>REF</sub> out SIN+ SINCOS+ COSA out

| Terminal           | Function                                                           |
|--------------------|--------------------------------------------------------------------|
| X410A.1<br>X410A.2 | (+) $\sim$ 6 VAC resolver power supply<br>(-) ( $I_{max} = 60$ mA) |
| X410A.3<br>X410A.4 | Resolver $sin	heta$ signal input                                   |
| X410A.5<br>X410A.6 | Resolver cosθ signal input                                         |
| X410A.7            | Channel A speed sensor emulation                                   |



| Terminal | Function                                 |
|----------|------------------------------------------|
| X410B.1  | Channel $\bar{A}$ speed sensor emulation |
| X410B.2  | Channel B speed sensor emulation         |
| X410B.3  | Channel B speed sensor emulation         |
| X410B.4  | ± 10 V or ± 20 mA analog input           |
| X410B.5  | CAN-Low Systembus                        |
| X410B.6  | CAN-High Systembus                       |
| X410B.7  | GND                                      |



# **Expansion modules**

## Resolver Module / EM-RES-02

EM-RES-02 angular position transducer module extends the standard functions of the frequency inverter by providing a supplementary input for a resolver.

This module shares all the features of EM-RES-01 except for the emulation of the encoder zero signal, which in this case is replaced by a Systembus port.





Location of EM-RES-02 module on the frequency inverter

## **Terminal board layout and functions:**

| Terminal           | Function                                                                |
|--------------------|-------------------------------------------------------------------------|
| X410A.1<br>X410A.2 | (+) $\sim$ 6 VAC resolver power supply<br>(-) (I <sub>max</sub> = 60mA) |
| X410A.3<br>X410A.4 | Resolver sen $\theta$ signal input                                      |
| X410A.5<br>X410A.6 | Resolver $\cos\theta$ signal input                                      |
| X410A.7            | Channel A speed sensor emulation                                        |

| /\ <del>-</del> 10/\./ | Challier A speed sensor chalation                      |
|------------------------|--------------------------------------------------------|
|                        |                                                        |
| Terminal               | Function                                               |
| X410B.1                | Channel Ā speed sensor emulation                       |
| X410B.2                | Channel B speed sensor emulation                       |
| X410B.3                | Channel $\overline{\mathtt{B}}$ speed sensor emulation |
| X410B.4                | ±10 V or ± 20 mA analog input                          |
| X410B.5                | Channel Z speed sensor emulation                       |
| X410B.6                | Channel Z̄ speed sensor emulation                      |
| X410B.7                | GND                                                    |

## 1 +V<sub>REF</sub> out 2 -V<sub>REF</sub> out SIN+ SIN-COS+ COS-

**Terminal board X410A** 

|           |    | 1 | Ā out    |
|-----------|----|---|----------|
|           | ᅴ느 | 2 | B out    |
| ±10Vref — | ╙  | 3 | Ē out    |
| <b>←</b>  | +- | 4 | EM-S1INA |
| Ĭ         |    | 5 | Z out    |
|           |    | 6 | ₹ out    |
|           |    | 7 | GND      |



# **Expansion modules**

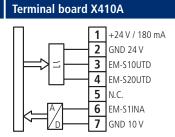
### Resolver Module / EM-RES-03



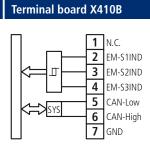
EM-RES-03 resolver module extends the standard functions of Active Cube servo inverter providing a supplementary input for resolver.

It is designed specifically for BTD/BCR synchronous servomotors resolver feedback acquisition. EM-RES-03 is equipped with DB9 connector, that allows fast and easy connection to Bonfiglioli synchronous servomotors, when using BTD/BCR power and control cables.

As essential component of Bonfiglioli servo package, EM-RES-03 module can be used only in Active Cube.




Location of EM-RES-03 module on the frequency inverter


# Resolver- and PTC input (SubD-9)

| Pin    | Designation | Function                   |
|--------|-------------|----------------------------|
| Socket | Shielding   | Connected with PE          |
| 1      | PE          | Protective earth conductor |
| 2      | PTC+        | PTC thermistor connection  |
| 3      | COS+        | Cosinus track              |
| 4      | SIN+        | Sinus track                |
| 5      | +UE         | Excitation voltage         |
| 6      | PTC-        | PTC thermistor connection  |
| 7      | COS-        | Cosinus track              |
| 8      | SIN-        | Sinus track                |
| 9      | -UE         | Excitation voltage         |

#### **Terminal board layout and functions:**



| Terminal | Function                     |
|----------|------------------------------|
| X410B.1  | DC-24 V output (max. 180 mA) |
| X410B.2  | Ground 24 v                  |
| X410B.3  | Digital output EM-S1OUTD     |
| X410B.4  | Digital output EM-S2OUTD     |
| X410B.5  | Not connected                |
| X410B.6  | Analog input EM-S1INA        |
| X410B.7  | Ground 10 V                  |



| Terminal | Function               |
|----------|------------------------|
| X410B.1  | Not connected          |
| X410B.2  | Digital input EM-S1IND |
| X410B.3  | Digital input EM-S2IND |
| X410B.4  | Digital input EM-S3IND |
| X410B.5  | System bus, CAN-Low    |
| X410B.6  | System bus, CAN-High   |
| X410B.7  | Ground                 |



## **Engineering software**

VPlus is a PC Windows-based engineering software tool that guides industrial automation designers through the steps towards the definition of the optimal configuration of Active Cube drives.

Communication between VPlus and the drive is based on standard serial communication either through KP232, CM232 or CM-485 interface.

With VPlus a wide set of activities on Active Cube are possible:

#### Monitoring

Advanced display tools, help to have correct information about drive operation and process variables.

"Actual values" windows collect all variables of interest in one screenshot and displays the real time value of them (variables can be selected by user).

VPlus "dashboards" display real time values of selected variables with an effective visual tool.

#### **Diagnosis**

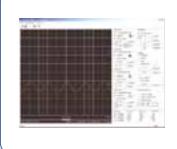
VPlus includes a reliable integrated oscilloscope monitor, able to provide real time traces of main device parameters and process selected variables. That distinctive feature is very useful both during normal operation and in case of exceptional events to collect comprehensive detailed information about drive behaviour, helping both analysis and troubleshooting. Commissioning your machine is easy with Oscilloscope monitor.

#### Inverter set up and parameter access

The drive setup up is really easy. Important functions like the motor set-up allow you to configure your system in short time. With the parameter tree design, all parameters are sorted logically by the functions and can be accessed intuitively.

#### **Software customization**


Drive software customization is possible having access to inner parameter levels and using PLC logic programming to create new drive control routines.


#### **Technology functions management**

High level technology functions of the drive, as well as specific application functions can be accessed and activated.

For example, VPlus software includes a section dedicated to setup and link of Motion Blocks for positioning applications, and a section for logic PLC functions management. Also application customized functions are available, such as dynamic brake release control, spindle motor control, multipump management, and others.











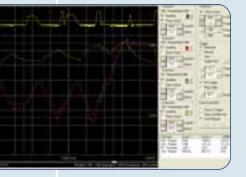
# **Engineering software**



#### Motor setup

A wide set of functionalities are available to get to faster and more effective motor "recognition".

A dedicated window for induction motor rated values load is available, and new parameters can be freely selected and added to rearrange the default window.


The accurate autotuning procedure of Active Cube, used to optimize motor control, can be started via software, through a simple flag change.

The parameter values for Bonfiglioli synchronous servomotor control are available in the drive: rated speed, stall torque, load curves, resolver phase angle, etc. for all existing Bonfiglioli servomotors ratings are stored into the standard device.

Selection and load of correct values for the servomotor is done directly by the drive after the motor designation is selected through an easy guided interface: the procedure takes only few seconds and no further autotuning is required to have the motor running correctly.

#### **Commissioning**

VPlus engineering software is very powerful tool in commissioning and machine start up phases, both in case Active Cube is used as a "system drive" and as "servo drive". Usual adjustments to last minute requests and system troubleshooting needed, take benefit of the extreme flexibility and handy set of tools that engineers can find in VPlus to support "on site" activities



#### **ACTIVE CUBE oscilloscope graphic presentation**

The functionality and practicality of the virtual oscilloscope are identical to those of a powerful and modern conventional oscilloscope, with the added benefit that all the parameters controlled by the inverter microprocessor can be displayed, whether of a physical nature (current, voltage, frequency, etc.) or a virtual nature (internal control variables, timer signals, comparator signals, internal digital signals, etc.).

#### Salient features of the Oscilloscope Function:

4 channels

Display of absolute values

Amplitude and time measurement cursors

Timebase from 20 ms/div to 50 s/div

Various trigger types

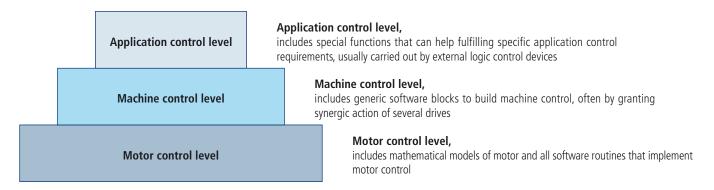
Graphic memory up to 1 Mbyte

Trace recording memory up to 60 min.

Sampling times from 2 ms to 32 ms (depending on the PC)

Various trace storage formats




# **Function highlights**

# **Active Cube**

#### **Active Cube control levels**

Active Cube has by far the widest application potential of all Bonfiglioli drive offer, thanks to its extremely rich set of functionalities, combined with flexible hardware structure and significant power range extension.

3 "virtual" functional levels can be defined, related to different control "areas":



#### Motor control level

At Motor control level, Active Cube is designed to suite to almost all motor technologies used in industrial machines: synchronous servomotors, rotating or linear motors, as well as traditional asynchronous induction motors can be used with standard Active Cube devices..

Many available different control modes, provide the possibility to select the right mix of accuracy, ease, stability of performance to satisfy the requirements of any industrial applications, from fan and pump control, to sophisticated positioning or synchronization systems.

|                     | Simple Sensorless Control of induction motors (mode 110) Accuracy: • Ease of use: ••••                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
| Motor control modes | Closed loop Field Oriented (Vector) control of induction motors (mode 210) Accuracy: •••• Ease of use: ••          |
| wotor control modes | Sensorless Field Oriented (Vector) control of induction motors (mode 410)  Accuracy: •••  Ease of use: •••         |
|                     | Closed loop Field Oriented (Vector) control of synchronous servomotors (mode 515) Accuracy: •••• Ease of use: •••• |



# **Function highlights**

#### Machine control level

Within each Motor control mode, a range of "machine" control functions, belonging to Machine control level, is available. These functions aim to give to users and designers of Active Cube a set of ready-to-use routines and functions able to fit, with few adjustments, the automation needs of many different machines and sectors: PID function, Master/Slave synchronization, electronic shaft/gear, torque/speed switching, and position control functions are only few examples.

|                                                       |     |              |                                              | Control                            | Function               |                                        |                           |
|-------------------------------------------------------|-----|--------------|----------------------------------------------|------------------------------------|------------------------|----------------------------------------|---------------------------|
| Control Mode                                          |     | PID<br>(x11) | Master slave and<br>electronic gear<br>(x15) | Torque/speed<br>switching<br>(x30) | Index control<br>(x16) | Brake control and load detection (x60) | Position control<br>(x40) |
| Simple sensorless for induction motors                | 110 | Х            | X                                            |                                    | X                      | X                                      |                           |
| Closed loop field oriented of induction motors        | 210 |              | Х                                            | Х                                  | X                      | X                                      | Х                         |
| Sensorless field oriented of induction motors         | 410 | Х            | X                                            | X                                  |                        | X                                      | Х                         |
| Closed loop field oriented of synchronous servomotros | 510 |              | X                                            | Х                                  | X                      | X                                      | Х                         |

### **Application control level**

Third level "Application (specific) control level" includes particular features and control routines designed to match the requirements of unusual industrial applications.

These functions are giving to Active Cube exceptional ability to fulfil non-common needs of such applications: no necessity of customized versions of the drive, because software functions are stored in standard Active Cube devices and can be activated directly by customer.

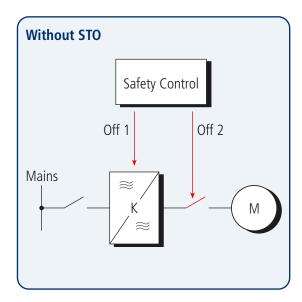
Examples are: spindle control up to 1000Hz (machining), extended brake control with load detection (lifting), synchronized "traverse" function (yarn winders), motion blocks management.

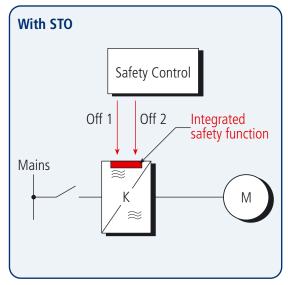
Please find more details about these functions in product documentation or to your local DSC.



## **Automation functions and features**

# **Active Cube**


## Safe torque off (STO)

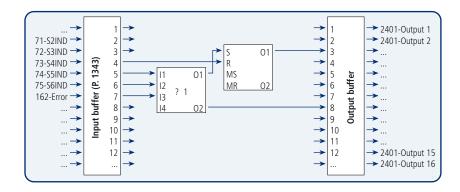

The safety function "Safe Torque Off" (STO) with the safety integrity level SIL 2 (see DIN EN 61508 and DIN IEC 61800-5-2) is implemented into standard Active Cube inverter range.

The drive feature helps overall automation system to achieve "Safe Stop" category 3, according to DIN EN 954-1.

Thanks to STO function, energy supply from frequency inverter to motor is safely disabled. Deactivation of the inverter supply is carried out via two switch off paths in no-signal current mode, thus performing redundant switch off control.

Continuous monitoring tests are done by the inverter to detect possible control failures. "Safe Torque Off" function greatly improves safety level of your automation system without the need of additional components.








## **Automation functions and features**

## **Logic functions**

Standard Active Cube is equipped with integrated "PLC like" logic functions to exploit at best automation ability of the drive. Onboard control logic functions are based on a runtime software able to execute a "block operation" every 1msec.



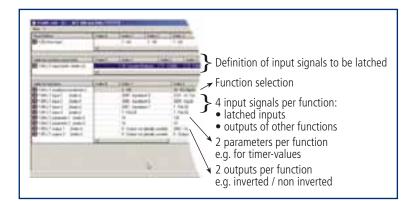
Sophisticated control routines design is within range with new logic functions. Software developers will be able to adjust drive controls fitting automation requirements, simply combining the 16 inputs with the 32 function blocks available and achieving results in the 16 output latches.

Following features are implemented:

## Input buffer for up to 16 signals

e.g. for

- Digitals inputs
- Errors
- Warnings
- RxPDO booleans of systembus


#### Output buffer for up to 16 signals

e.g. for

- Start clockwise / anticlockwise
- Data set change over
- Digital outputs
- TxPDO booleans of systembus
- ...

## 32 functions configurable as

- Logic functions:
  - AND
  - OR
  - XOR
- Flip-flops:
  - RS-flip-flop
  - Toggle-flip-flop
  - D-flip-flop
- Timer-functions:
  - Delay for rising/falling edge
  - Mono-flop
  - Oscillator
- Additional functions:
  - Multiplexer for digital signals
  - Conditional jumps

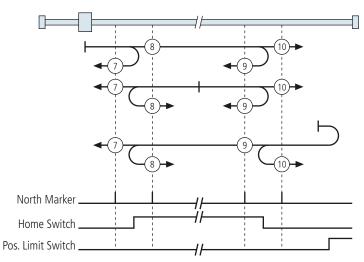


Setting logic functions is easier than ever, thanks to VPlus dedicated configuration section.

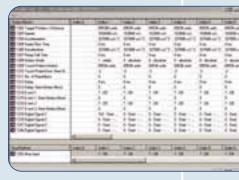
Parameters needed for logic functions are collected together in a single view/window for better and easier programming.

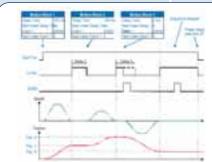
For detailed information about advanced programming features, please refer to your nearest Bonfiglioli Drive Service Centre, where experts are available for customer technical support.




The "elemental software unit" of motion control in Active Cube is the "Motion Block". One "Motion Block" completely outlines one point-to-point positioning step, including:

- target position,
- speed,
- acceleration,
- deceleration,
- ramps,
- delays


Built-in motion control functions allow to combine up to 32 motion blocks in a conditional sequence, to program even most sophisticated point-to-point motion profiles


A comprehensive set of homing functions, according to CANOpen DSP 4.02 standard is available in Active Cube. 36 different homing modes can be used to answer to the motion requirements of a wide range of machines.

Homing search can be triggered by either digital input (e.g. hardware limit switches), or control word (if Fieldbus is used), or as an automatic procedure before first positioning sequence.



## **Motion blocks**





# Homing



## **Motion functions**

# Rotary table function

When controlling a rotary working table target position is calculated and reached within one revolution. Rotary table function enables the drive to detect the shortest way to reach the desired angular position, considering the shaft revolutions needed to do a complete table rotation.

Best sense of rotation, clockwise or anti-clockwise can also be detected, in order to minimize travel time and distance.

# Jog and teach-in functions



In "jog mode" drive can be freely moved at fixed speed in both directions through the "manual" set of assigned digital inputs.

During jog mode, several target positions can approached and saved through Teach-in function: when desired position is reached, teach-in function allows to take over actual position in the active travel record as target position.



## Introduction

When using Active Cube in servo applications, you can get the best out of the drive when applied together with Bonfiglioli servomotors.

Active Cube and Bonfiglioli servomotors were, in fact, designed to exploit at best reciprocal synergies thus forming a servo "package", able to provide significant advantages to users both in terms of enhanced performance and in terms of reduced setup time. The Bonfiglioli servo system benefits from several specific solutions, involving the 2 product series:

- Active Cube has a preloaded parameter profile of Bonfiglioli servomotors.
- Wiring the drive to motor is easier thanks to the availability of factory pre-wired cables and connectors.
- "Motion" functions are readily available

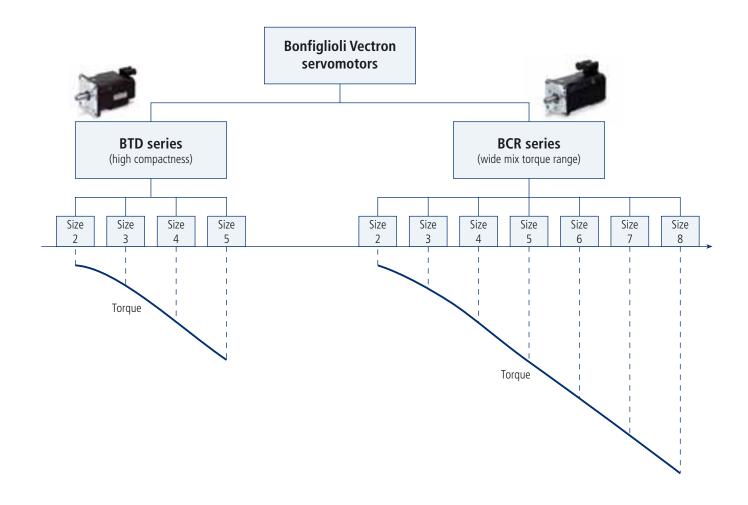






# Servo package

## Bonfiglioli servomotors range




Bonfiglioli servomotors offer includes 2 series of permanent magnet synchronous servomotors, BTD (Bonfiglioli Torque Density) and BCR (Bonfiglioli Classic Range) featured by different speed and torque ranges, achieved through different construction technologies.

BTD and BCR series are split into many frame sizes, each of them grouping together devices with same flange dimensions and different motor lengths able to supply different torque ratings within one frame size

BCR devices are designed to provide a wide rated torque range up to 115 Nm and peak torque up to 400%.

BTD devices, fulfil the need of high torque in small motor dimensions. Innovative construction technology, together with high quality of magnets used allows BTD servomotors achieving a "torque density of 15,3 Nm/dm<sup>3</sup>.





# Servo package

# **Active Cube**

## Match tables

For consistent match between Active Cube in "servo mode" and BTD/BCR servomotors ratings cross reference tables are below provided.

To choose best servo package for your needs, calculate max torque required by your application and compare it to the values within the table: best choice corresponds to the match servodrive-servomotor that gives at least needed max torque with a safety margin of 10%.

For more detailed dimensioning and in case of unusual torque profile or operating conditions, please refer to your local Drive Service Centre.

#### **ACU 230V ⇐⇒ BTD 230V**

|                                 |           |              |              |              |              |              | BTD       | servom    | otor          |               |               |               |               |           |           |
|---------------------------------|-----------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|---------------|---------------|---------------|---------------|---------------|-----------|-----------|
| ACTIVE CUBE<br>drive            | BTD2-0026 | BTD2-0053    | BTD2-0074    | BTD2-0095    | BTD3-0095    | BTD3-0190    | BTD3-0325 | BTD3-0420 | BTD4-0410     | BTD4-0630     | BTD4-0860     | BTD5-1160     | BTD5-1490     | BTD5-1870 | BTD5-2730 |
| ACU201-01 M <sub>n</sub>        | 0,25      | 0,42         | 0,45         |              | 0,65         |              |           |           |               |               |               |               |               |           |           |
| M <sub>max</sub>                | 0,74      | 0,84         | 0,89         |              | 1,29         |              |           |           |               |               |               |               |               |           |           |
| ACU201-03 $\frac{M_n}{M_{max}}$ |           | 0,47<br>1,35 | 0,69<br>1,43 | 0,72<br>1,45 | 0,92<br>2,07 | 1,09<br>2,17 |           |           |               |               |               |               |               |           |           |
| M                               |           | 1,55         | 0,69         | 0,86         | 0,92         | 1,63         |           | 2,63      |               |               |               |               |               |           |           |
| ACU201-05 $\frac{M_n}{M_{max}}$ |           |              | 2,01         | 2,04         | 2,91         | 3,05         |           | 3,94      |               |               |               |               |               |           |           |
| ACU204 07 Mn                    |           |              | 0,69         | 0,86         | 0,92         | 1,63         | 3,02      | 3,24      | 2,73          |               |               |               |               |           |           |
| ACU201-07 M <sub>max</sub>      |           |              | 2,67         | 2,71         | 3,49         | 4,07         | 4,53      | 5,25      | 4,10          |               |               |               |               |           |           |
| ACU201-09 M <sub>n</sub>        |           |              |              | 0,86         |              | 1,63         | 3,02      | 3,24      | 3,42          |               |               |               |               |           |           |
| M <sub>max</sub>                |           |              |              | 3,30         |              | 4,95         | 5,52      | 6,39      | 4,99          |               |               |               |               |           |           |
| ACU201-11 M <sub>n</sub>        |           |              |              |              |              |              | 3,02      | 3,24      | 3,42          | 4,83          | 5,38          |               |               |           |           |
| M <sub>max</sub>                |           |              |              |              |              |              | 7,94      | 9,19      | 7,18          | 7,25          | 8,06          |               |               |           |           |
| ACU201-13 M <sub>n</sub>        |           |              |              |              |              |              | 3,02      | 3,24      | 3,42          | 4,83          | 6,37          |               |               |           |           |
| M <sub>max</sub>                |           |              |              |              |              |              | 10,81     | 12,51     | 9,77          | 9,87          | 10,98         | 0.20          | 0.27          |           |           |
| ACU201-15 $\frac{M_n}{M_{max}}$ |           |              |              |              |              |              |           |           | 3,42<br>11,14 | 4,83<br>11,25 | 6,37<br>12,52 | 8,38<br>10,93 | 9,27<br>12,08 |           |           |
| Ma                              |           |              |              |              |              |              |           |           | 11,14         | 4,83          | 6,37          | 8,85          | 11,56         |           |           |
| ACU201-18 M <sub>max</sub>      |           |              |              |              |              |              |           |           |               | 18,15         | 20,19         | 17,63         | 19,50         |           |           |
| M_                              |           |              |              |              |              |              |           |           |               | . = 1 . 5     | 6,37          | 8,85          | 11,56         | 14,75     | 18,54     |
| ACU201-19 M <sub>max</sub>      |           |              |              |              |              |              |           |           |               |               | 23,27         | 20,32         | 22,46         | 20,31     | 25,53     |
| ACU201-21 M <sub>n</sub>        |           |              |              |              |              |              |           |           |               |               |               | 8,85          | 11,56         | 15,01     | 21,40     |
| ACU201-21 M <sub>max</sub>      |           |              |              |              |              |              |           |           |               |               |               | 29,84         | 32,99         | 29,83     | 37,50     |
| ACU201-22 M <sub>n</sub>        |           |              |              |              |              |              |           |           |               |               |               | 8,85          | 11,56         | 15,01     | 21,40     |
| M <sub>max</sub>                |           |              |              |              |              |              |           |           |               |               |               | 34,53         | 38,18         | 34,52     | 43,39     |

#### Note:

For servomotor ratings and description, please refer to relevant catalogue.

0,00 ← Continuous torque 0,00 ← Max torque

This table helps you to do mentative evaluation of motor and drive matches: for final dimensioning and selection of motor and drive please refer to servomotor ratings in relevant catalogue.



56

|                            |                                  |           |           |           |           |           | BTD       | BTD servomotor | otor      |           |           |           |           |           |           |
|----------------------------|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ACTIVE CUBE<br>drive       | 9Z <b>SX</b> COOC <b>Z</b> IGIL8 | BTD2-0053 | 4700-20T8 | BTD2-0095 | BTD3-0095 | BTD3-0190 | BTD3-0325 | BTD3-0420      | BTD4-0410 | BTD4-0630 | BTD4-0860 | 0911-SQT8 | BTDS-1490 | 0781-20T8 | BTDS-2730 |
|                            | 0,42                             | 0,48      | 69'0      | 0,73      | 0,72      | 1,14      |           |                |           |           |           |           |           |           |           |
| ACO401-01                  | 1,05                             | 1,45      | 1,54      | 1,45      | 1,44      | 2,29      |           |                |           |           |           |           |           |           |           |
| M <sub>n</sub> CO 100 III  |                                  |           | 69'0      | 98'0      | 0,92      | 1,67      |           |                |           |           |           |           |           |           |           |
|                            |                                  |           | 2,47      | 2,32      | 2,30      | 3,66      |           |                |           |           |           |           |           |           |           |
| AC11401-05 Mn              |                                  |           | 69'0      | 98'0      | 0,92      | 1,67      | 2,44      | 2,52           |           |           |           |           |           |           |           |
|                            |                                  |           | 2,08      | 1,96      | 1,94      | 3,09      | 3,66      | 3,78           |           |           |           |           |           |           |           |
| ACIMO1-07 Mn               |                                  |           |           | 98'0      | 0,92      | 1,67      | 3,11      | 3,22           | 2,89      |           |           |           |           |           |           |
|                            |                                  |           |           | 2,61      | 2,59      | 4,12      | 4,88      | 5,04           | 4,34      |           |           |           |           |           |           |
| Mn Mn                      |                                  |           |           |           | 0,92      | 1,67      | 3,11      | 3,22           | 3,38      | 4,23      |           |           |           |           |           |
|                            |                                  |           |           |           | 3,45      | 5,49      | 6,50      | 6,72           | 5,79      | 6,34      |           |           |           |           |           |
| Mn Mn                      |                                  |           |           |           |           | 1,67      | 3,11      | 3,22           | 3,38      | 4,75      |           |           |           |           |           |
|                            |                                  |           |           |           |           | 6,52      | 7,72      | 7,98           | 6,87      | 7,53      |           |           |           |           |           |
| M <sub>n</sub> 12          |                                  |           |           |           |           |           | 3,11      | 3,22           | 3,38      | 4,75      | 5,64      |           |           |           |           |
|                            |                                  |           |           |           |           |           | 8,53      | 8,82           | 7,60      | 8,32      | 8,47      |           |           |           |           |
| ACIMO1-13 Mn               |                                  |           |           |           |           |           | 3,11      | 3,22           | 3,38      | 4,75      | 6,45      |           |           |           |           |
|                            |                                  |           |           |           |           |           | 11,78     | 12,18          | 10,49     | 11,49     | 11,69     |           |           |           |           |
| Mn Mn                      |                                  |           |           |           |           |           |           |                |           | 4,75      | 6,45      | 8,70      |           |           |           |
|                            |                                  |           |           |           |           |           |           |                |           | 15,45     | 15,72     | 13,05     |           |           |           |
| AC11401-18 Mn              |                                  |           |           |           |           |           |           |                |           | 4,75      | 6,45      | 8,81      | 10,73     | 10,26     |           |
|                            |                                  |           |           |           |           |           |           |                |           | 17,83     | 18,14     | 15,06     | 16,09     | 15,39     |           |
| ACIMO1-19 Mn               |                                  |           |           |           |           |           |           |                |           |           |           | 8,81      | 11,44     | 14,94     | 20,12     |
|                            |                                  |           |           |           |           |           |           |                |           |           |           | 23,42     | 25,03     | 23,95     | 30,17     |
| M <sub>n</sub> 101.01      |                                  |           |           |           |           |           |           |                |           |           |           | 8,81      | 11,44     | 14,94     | 21,41     |
| ACO401-21 M <sub>max</sub> |                                  |           |           |           |           |           |           |                |           |           |           | 29,33     | 31,35     | 29,99     | 37,79     |
| M <sub>n</sub> CC 1041DA   |                                  |           |           |           |           |           |           |                |           |           |           | 8,81      | 11,44     | 14,94     | 21,41     |
|                            |                                  |           |           |           |           |           |           |                |           |           |           | 33,80     | 36,12     | 34,55     | 43,54     |
| Mn 22 Mn                   |                                  |           |           |           |           |           |           |                |           |           |           |           | 11,44     | 14,94     | 21,41     |
|                            |                                  |           |           |           |           |           |           |                |           |           |           |           | 44,70     | 42,76     | 53,88     |
| AC11401_25 Mn              |                                  |           |           |           |           |           |           |                |           |           |           |           |           | 14,94     | 21,41     |
|                            |                                  |           |           |           |           |           |           |                |           |           |           |           |           | 50,74     | 63,94     |
|                            |                                  |           |           |           |           |           |           | L              |           |           |           | -         |           |           |           |

For servomotor ratings and description, please refer to relevant catalogue.

This table helps you to do mentative evaluation of motor and drive matches: for final dimensioning

and selection of motor and drive please refer to servomotor ratings in relevant catalogue.

0,00 ⇔ Continuous torque 0,00 ⇔ Max torque



This table helps you to do mentative evaluation of motor and drive matches: for final dimensioning and selection of motor and drive please refer to servomotor ratings in relevant catalogue.

For servomotor ratings and description, please refer to relevant catalogue.

# Servo package

# **Active Cube**

| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |           |           |           |           |           |           |           |           |           |           | BCR  | BCR servomotor | otor |       |           |           |           |           |           |           |           |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|----------------|------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| M.M. G.OLO         0.28         0.49         0.51         0.44         0.51         0.49         0.51         0.49         0.51         0.49         0.51         0.49         0.51         0.49         0.51         0.49         0.51         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACTIVE CUBE drive | BCKZ-0020 | BCK2-0040 | BCK2-0060 | BCKZ-0080 | BCK3-0062 | BCK3-0130 | BCK3-0520 | BCK3-0300 | BCK4-0100 | BCB4-0590 |      |                |      |       | BCK2-1700 | BCK2-5500 | BCK6-1350 | BCK6-1900 | BCK6-2200 | BCK6-2900 | BCK7-2700 | BCK7-3200 | BCR7-4000 |
| Windle |                   | 0,20      | 0,38      |           |           | 0,47      |           |           |           |           |           |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0,68      | 98'0      |           |           | 0,94      |           |           |           |           |           |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mmans         1,38         1,56         1,64         1,51         1,73         1,75         1,75         1,75         1,75         1,75         1,75         1,75         1,75         1,75         1,75         1,78         1,78         1,78         1,75         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78         1,78 <t< th=""><th></th><th></th><th>0,38</th><th></th><th></th><th></th><th>0,87</th><th></th><th>_</th><th>78,0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           | 0,38      |           |           |           | 0,87      |           | _         | 78,0      |           |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mm.         C 52 0, 52 0, 75 0, 62 1, 08 1, 88 1, 188 0, 98 2, 52 2         1,58 0, 75 0, 62 1, 08 1, 88 1, 188 0, 98 2, 52 2         1,58 0, 75 0, 75 0, 75 0, 98 2, 52 2         1,58 0, 75 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,58 0, 98 2, 52 2         1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           | 1,38      |           |           |           | 1,73      |           |           | 1,75      |           |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mmas         2,20         2,31         2,12         2,44         2,81         2,81         2,46         3,77         3,78         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,75         3,74         4         4         4         3         9         1         7           Mmas         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |           |           |           |           |           |           |           |           |           | 2,52      |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mm         O,75         1,08         2,13         2,25         6,26         5,03         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |           |           |           |           |           |           | 18,       |           |           | 3,77      |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mmax         3,08         3,25         3,75         3,75         3,25         4,40         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63         4,63 <th< td=""><th></th><td></td><td></td><td></td><td>0,75</td><td></td><td></td><td>,13</td><td></td><td></td><td>2,52</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |           |           |           | 0,75      |           |           | ,13       |           |           | 2,52      |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mm, Mms         Mm, Mms         1,08         2,13         2,25         4,40         4,63         4,63           Mm, Mms         Mm, Mms         3,95         4,56         4,56         6,12         5,95         4,63         6,26         8,21         6,26         6,26         6,26         6,26         8,81         8,65         9,00         7,13         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |           |           |           | 3,08      |           |           | 75        | 75        | 28        | 5,03      |      |                |      |       |           |           |           |           |           |           |           |           |           |
| Mmax         3,95         4,56         4,56         6,12         5,95         6,26         6,26         6,26         6,26         6,26         6,26         6,26         8,81         5,77         5,83         7,44           Mmax         Mmax         2,25         4,81         6,56         8,81         8,56         9,00         7,44           Mmax         Mmax         2,25         4,81         6,68         5,83         7,44           Mmax         Mmax         8,94         11,66         11,79         12,26         11,21           Mmax         Mmax         8,94         13,43         13,43         3,91         12,77           Mmax         Mmax         Mmax         13,29         13,43         13,97         12,77           Mmax         Mmax </td <th>Mn Mn</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13</td> <td>2,25</td> <td>, 7</td> <td></td> <td>1,40</td> <td>4,</td> <td>63</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mn Mn             |           |           |           |           |           |           | 13        | 2,25      | , 7       |           | 1,40 | 4,             | 63   |       |           |           |           |           |           |           |           |           |           |
| Mn         Mn         2,13         2,25         4,81         5,77         5,83         7,44           Mn         Mn         2,25         6,56         6,56         6,56         6,56         6,56         6,56         6,56         6,56         6,56         6,58         8,81         8,56         9,00         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44         7,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mmax              |           |           |           |           |           | 95        | 95,       | 4,56      | y         |           | 36'9 | 6,             | 56   |       |           |           |           |           |           |           |           |           |           |
| Mnmax         6,56         6,56         6,56         8,81         8,56         8,65         9,00           Mnmax         Mnmax         8,94         11,66         11,79         12,25         11,21           Mnmax         Mnmax         8,94         11,66         11,79         12,26         11,21           Mnmax         Mnmax         13,29         13,43         13,97         12,77           Mnmax         10         10         10         10         10         10           Mnmax         10         10         10         10         10         10         10           Mnmax         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |           |           |           |           |           | 13        | 2,25      | , 7       |           |      |                | 83   |       |           |           |           |           |           |           |           |           |           |
| Mn         Mn         2,25         4,81         6,68         5,83         7,44           Mnax         Mn         4,81         6,68         5,83         7,44           Mn         Mn         4,81         6,68         5,83         9,01           Mn         Mn         13,29         13,43         13,77         12,77           Mn         Mn         6,68         5,83         9,01           Mn         Mn         Mn         Mn         Mn         Mn         Mn         Mn         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |           |           |           |           |           |           | 99        | 95'9      | ω         | 181       | 99   |                | 00   |       |           |           |           |           |           |           |           |           |           |
| Mmax         8,94         11,66         11,79         12,26         11,21           Mn         Mmax         4,81         6,68         5,83         9,01           Mn         Mn         6,68         5,83         9,01           Mn         Mn         21,68         25,54         20,61           Mn         Mn         6,68         5,83         9,01           Mn         Mn         24,97         23,74           Mn         Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |           |           |           |           |           |           | 2,25      |           | 7         | 9    | 89             |      | 47    |           |           |           |           |           |           |           |           |           |
| Mn         Mnax         4,81         6,68         5,83         9,01           Mnax         Mnax         6,68         5,83         9,01           Mn         Mn         21,68         5,83         9,01           Mn         Mn         6,68         5,83         9,01           Mn         Mn         6,68         5,83         9,01           Mn         Mn         21,68         22,54         20,61           Mn         Mn         24,97         23,74           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |           |           |           |           |           |           | 8,94      |           | 1         |      |                |      | 21    |           |           |           |           |           |           |           |           |           |
| Mmax         13,29         13,43         13,97         12,77           Mn         6,68         5,83         9,01           Mn         21,68         25,54         20,61           Mn         6,68         9,01           Mn         24,97         23,74           Mn         9,01           Mn         34,87           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           |           |           |           |           |           |           |           | 7         | 9    | 89             |      |       | 0 11,55   | 2         | 11,56     |           |           |           |           |           |           |
| Mn         Mn         6,68         5,83         9,01           Mn         21,68         22,54         20,61           Mn         6,68         9,01           Mn         24,97         23,74           Mn         9,01           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M <sub>max</sub>  |           |           |           |           |           |           |           |           |           |           | 29   | 43 1           |      | _     | 55 15,06  | 9         | 15,07     |           |           |           |           |           |           |
| Mmax         21,68         22,54         20,61           Mn         6,68         9,01           Mn         24,97         23,74           Mn         9,01           Mn         9,01           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |           |           |           |           |           |           |           |           |           | 9    |                |      |       | 25 14,78  | 8 15,47   | 13,50     | 14,87     |           |           |           |           |           |
| Mn         Mn         6,68         9,01           Mn         Mn         24,97         23,74           Mn         9,01         9,01           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |           |           |           |           |           |           |           |           |           | 21   | 22             | 54   |       | 11 24,30  | 0 22,60   | 24,32     | 21,73     |           |           |           |           |           |
| Mmax         24,97         23,74           Mm         9,01           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |           |           |           |           |           |           |           |           |           | 9    | 89             | )'6  |       | 25 14,78  | 8 17,36   | 13,50     | 17,60     | 18,91     | 20,38     | 21,06     | 21,46     | 20,00     |
| Mn         9,01           Mnax         34,87           Mn         34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           |           |           |           |           |           |           |           |           | 24   | 76'            | 23,  | 23,   | 51 27,99  | 9 26,04   | 1 28,02   | 25,03     | 26,04     | 28,07     | 29,01     | 29,56     | 27,55     |
| M <sub>nax</sub> 34,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |           |           |           |           |           |           |           |           |           |           |      |                | )'6  |       | 25 14,78  | 8 17,36   | 13,50     | 17,60     | 19,68     | 24,83     | 22,69     | 25,27     | 28,91     |
| Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |           |           |           |           |           |           |           |           |           |           |      |                | 34,  |       | 53 41,11  | 1 38,24   | 41,15     | 36,76     | 38,24     | 41,23     | 42,61     | 43,41     | 40,45     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACIIO01-22        |           |           |           |           |           |           |           |           |           |           |      |                |      | 11,2  | 25 14,78  | 8 17,36   | 13,50     | 17,60     | 19,68     | 24,83     | 52,69     | 25,27     | 28,91     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mmax              |           |           |           |           |           |           |           |           |           |           |      |                |      | 39,96 | 96 47,58  | 8 44,26   | 5 47,62   | 42,54     | 44,26     | 47,72     | 49,31     | 50,24     | 46,82     |

Note:

0,00 ⇔ Continuous torque

|⇔ Max torque 00'00

BONFIGLIOLI VECTRON

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           |   |     |           |           |           |          |      |     |     |               | 2         | , Co      |           | ;         |           |               |               |      |    |      |          |           |           |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|---|-----|-----------|-----------|-----------|----------|------|-----|-----|---------------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|------|----|------|----------|-----------|-----------|-----------|-----------|
| May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mary   Mary |                            |           |   |     |           |           |           |          |      |     |     |               |           | בע אבו    | VOIIO     | 5         |           |               |               |      |    |      | -        | ŀ         | ļ         |           |           |
| MA.         O.29         0.38         0.38         0.38         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M.M.         CASO         0.584         0.58         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59 <t< th=""><th>ACTIVE CUBE drive</th><th>BCK2-0020</th><th></th><th></th><th>BCK2-0080</th><th>BCK3-0065</th><th>BCR3-0130</th><th></th><th></th><th></th><th></th><th></th><th>BCB2-0990</th><th>BCK2-1020</th><th>BCK2-1320</th><th>BCKS-1700</th><th>BCK2-2200</th><th>BCK6-1350</th><th></th><th></th><th></th><th></th><th></th><th>BCK8-0400</th><th>BCK8-0680</th><th>BCK8-0930</th><th>BCK8-1150</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACTIVE CUBE drive          | BCK2-0020 |   |     | BCK2-0080 | BCK3-0065 | BCR3-0130 |          |      |     |     |               | BCB2-0990 | BCK2-1020 | BCK2-1320 | BCKS-1700 | BCK2-2200 | BCK6-1350     |               |      |    |      |          | BCK8-0400 | BCK8-0680 | BCK8-0930 | BCK8-1150 |
| M.M.         O.S.         1.88         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89 <th< th=""><th>M.M.         O.S.         1.64         1.65         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         <th< th=""><th>M</th><th>0,20</th><th></th><th></th><th></th><th></th><th>0,91</th><th></th><th>0</th><th>,94</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th></th<></th></th<>                                                                                                                                                                     | M.M.         O.S.         1.64         1.65         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83         1.83 <th< th=""><th>M</th><th>0,20</th><th></th><th></th><th></th><th></th><th>0,91</th><th></th><th>0</th><th>,94</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                          | 0,20      |   |     |           |           | 0,91      |          | 0    | ,94 |     |               |           |           |           |           |           |               |               |      |    |      |          |           | _         |           |           |
| M.M.         O.S. B 0.76 0.02         1.31 1.31 1.32 1.32 2.33 3.66         A.M.         A.M. </th <th>  M. M.</th> <th>Mmax</th> <th>0,85</th> <th></th> <th></th> <th></th> <th></th> <th>1,82</th> <th></th> <th></th> <th>68′</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mmax                       | 0,85      |   |     |           |           | 1,82      |          |      | 68′ |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| M.M.         A.M.         A.M. <th< th=""><th>MAIN-BIANCE         255         281         263         291         44         45         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46</th><th></th><th></th><th>٥</th><th></th><th></th><th></th><th>1,13</th><th></th><th>0</th><th>66'</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                            | MAIN-BIANCE         255         281         263         291         44         45         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |           | ٥ |     |           |           | 1,13      |          | 0    | 66' |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| M.M.         Q.58         Q.56         1.13         2.29         2.44         A.54         A.54         A.54         A.55         A.56         A.54         A.54         A.55         A.56         A.54         A.55         A.56         A.54         A.55         A.56         A.54         A.55         A.56         A.57         A.54         A.55         A.56         A.54         A.56         A.57         A.58         A.56         A.57         A.58         A.56         A.57         A.58         A.57         A.58         A.57         A.57         A.56         A.57         A.57 <th< th=""><th>MM, Mark         Q 55         0.75         2.25         2.45         2.66         3.10         2.55         3.66         3.10         3.56         3.66         3.10         3.56         3.10         3.56         3.66         3.11         3.12         2.52         2.45         2.60         3.11         3.12         3.12         3.56         3.57         3.60         3.11         3.12         3.12         3.21         3.24         4.12         3.40         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88</th><th></th><th></th><th>2</th><th></th><th>_</th><th></th><th>2,91</th><th></th><th>m</th><th>,02</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                               | MM, Mark         Q 55         0.75         2.25         2.45         2.66         3.10         2.55         3.66         3.10         3.56         3.66         3.10         3.56         3.10         3.56         3.66         3.11         3.12         2.52         2.45         2.60         3.11         3.12         3.12         3.56         3.57         3.60         3.11         3.12         3.12         3.21         3.24         4.12         3.40         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88         4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           | 2 |     | _         |           | 2,91      |          | m    | ,02 |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ma.         2.22         2.45         2.66         3.12         2.55         3.66         4.66         4.13         2.15         3.66         4.13         2.15         3.66         4.13         2.15         3.66         4.13         2.15         3.66         4.66         4.13         2.51         4.66         4.66         5.67         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.37         8.36         8.36         8.37         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36         8.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |           | 0 |     |           |           |           |          |      |     | 44  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <th< th=""><th>Mina         Mina         <th< th=""><th></th><th></th><th>2</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>99</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mina         Mina <th< th=""><th></th><th></th><th>2</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>99</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |           | 2 |     | _         |           |           |          |      |     | 99  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Min.         316         327         346         415         241         251         41         251         41         251         41         251         41         251         41         251         43         650         350         43         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         57         431         650         583         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581         581 <th>Min. Min. Min. Min. Min. Min. Min. Min.</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>51</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min. Min. Min. Min. Min. Min. Min. Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           |   | -   | -         |           |           |          | -    |     | 51  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Minal         Minal <th< th=""><th>Max.         Max.         <th< th=""><th></th><th></th><th></th><th>(1)</th><th>3,16</th><th></th><th></th><th></th><th>_</th><th></th><th>88</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></th></th<>                                                                                                                                     | Max.         Max. <th< th=""><th></th><th></th><th></th><th>(1)</th><th>3,16</th><th></th><th></th><th></th><th>_</th><th></th><th>88</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |           |   | (1) | 3,16      |           |           |          | _    |     | 88  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Min. Min. Min. Min. Min. Min. Min. Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min.<br>Min.<br>Min.<br>Min.         436 462 554 638         650 49         557 491 656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 587         656 588         656 588         656 587         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588         656 588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                          |           |   |     |           |           |           |          | ,31  | 2   | 51  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm. Minal         Mm. Minal         2,12         2,31         4,91         5,57         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,56         5,87         4,91         6,68         5,87         3,24         4,91         6,68         5,87         3,66         4,98         4,91         6,88         5,87         3,66         1,125         1,125         1,125         1,125         1,125         1,126         1,125         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126         1,126<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mm.         Mm. <th>ACU401-09 M<sub>max</sub></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>,54</th> <th>9</th> <th>50</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACU401-09 M <sub>max</sub> |           |   |     |           |           |           |          | ,54  | 9   | 50  |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm.         Mm.         5.48 6,58         7,72 1,31         6.56 7,57         8.36         9.58 7         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,31         9.6 1,25 1,32 1,32 1,32 1,32 1,32 1,32 1,32 1,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mm.         Mm.         S.48         6.58         7,72         7,37         8.36         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.8         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           |   |     |           |           |           | -        | 7,31 | 2   |     | 16            | 5,57      | _         |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm.         Mm.         S.12         2.12         2.31         2.51         4.91         6.56         5.87         8.34         9.84         9.24         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9.84         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mm. Mina.         Mm. Mina. <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>3,58</th><th>7</th><th></th><th>37</th><th>8,36</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |           |   |     |           |           |           |          | 3,58 | 7   |     | 37            | 8,36      |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           |   |     |           |           |           | $\vdash$ | 7,31 | 2   |     | $\vdash$      |           | _         |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Manue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mm. Miles         Mm. Miles         491         6.88         5.87         8.34         4.91         6.88         5.87         8.34         4.91         6.88         5.87         12.76         12.51         4.91         6.88         5.87         9.06         10.85         11.284         9.06         10.86         12.76         12.94         10.284         9.06         10.85         12.76         12.94         10.284         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         10.294         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |           |   |     |           |           |           |          | 7,27 | ∞   | 53  |               | _         |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mmax         Mmax         437         11.55         13.59         12.64         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.84         12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mmax         Mmax         Max         Max </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>2,12</td> <td></td> <td></td> <td>4,5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |           |   |     |           |           | -         | 2,12     |      |     | 4,5 |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm. Mina.         Mm. Mina. <t< th=""><th>Mmax         Mmax         4,91         6.88         5.87         9,06         10.284         12.84         12.84         12.84         12.84         12.84         12.84         13.26         12.84         13.26         12.92         13.26         12.84         13.26         12.84         13.26         12.84         13.26         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8,37</th><th></th><th></th><th>11,</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | Mmax         Mmax         4,91         6.88         5.87         9,06         10.284         12.84         12.84         12.84         12.84         12.84         12.84         13.26         12.84         13.26         12.92         13.26         12.84         13.26         12.84         13.26         12.84         13.26         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.26         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.24         13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           | 8,37     |      |     | 11, |               | _         |           |           |           |           |               |               |      |    |      |          |           |           |           |           |
| Mm, max         Mm, max         15,12         18,28         17,16         16,83         587         906         10,88         134,2         15,13         13,50         13,39         13,50         13,39         13,50         13,39         13,50         13,39         13,50         13,39         13,50         13,23         13,50         13,29         13,50         13,23         13,50         13,23         13,50         13,23         13,50         13,23         13,50         13,53         13,50         13,53         13,50         13,53         13,50         13,53         13,50         13,53         13,53         13,50         13,53         13,53         13,53         13,53         13,50         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53         13,53 <th< th=""><th>Mmax         Mmax         15,12         18,28         18,71         18,28         18,71         18,28         18,71         18,28         18,71         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,22         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4,5</th><th></th><th></th><th></th><th></th><th></th><th></th><th>12,84</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                     | Mmax         Mmax         15,12         18,28         18,71         18,28         18,71         18,28         18,71         18,28         18,71         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,21         18,20         18,22         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         22,23         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         18,20         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     | 4,5 |               |           |           |           |           |           | 12,84         |               |      |    |      |          |           |           |           |           |
| Mm         Mm         491         6.88         5,87         9,06         10,85         13,42         15,47         13,56         15,19         15,19           Mmax         Mm         17,45         21,09         19,80         19,42         16,47         13,42         15,47         13,59         20,34         15,19         15,19         15,19         18,02         13,22         18,29         20,34         15,19         15,19         18,02         13,27         18,25         18,02         13,02         22,78         18,25         18,02         13,02         22,78         13,52         15,02         22,78         13,52         15,02         13,02         22,78         13,52         15,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02         13,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mm         Mm         491         6.88         5.87         9.06         10,85         13,42         15,47         15,50         12,39         13,56         15,93           Mmax         Mm         Mm         9.06         11,48         14,91         18,05         13,20         17,62         19,43         22,78           Mmax         Mm         9.06         11,45         14,91         18,05         13,00         23,03         23,72         28,91         31,64         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41 <th></th> <th>15,</th> <th><math>\overline{}</math></th> <th>_</th> <th>_</th> <th>_</th> <th></th> <th></th> <th><math>\overline{}</math></th> <th><math>\overline{}</math></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     | 15, | $\overline{}$ | _         | _         | _         |           |           | $\overline{}$ | $\overline{}$ |      |    |      |          |           |           |           |           |
| Mm, max         Mm, max <t< th=""><th>Mm, max         Mm, max         I 7,45         21,09         19,80         19,42         16,27         20,13         18,59         20,34         20,24         20,24         Mode of 1,45         14,91         18,05         13,62         13,70         20,34         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4,5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>3,56</th><th>15</th><th>.'19</th><th></th><th></th><th></th><th></th><th></th></t<>                                              | Mm, max         Mm, max         I 7,45         21,09         19,80         19,42         16,27         20,13         18,59         20,34         20,24         20,24         Mode of 1,45         14,91         18,05         13,62         13,70         20,34         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24         20,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |           |   |     |           |           |           |          |      |     | 4,5 |               |           |           |           |           |           |               |               | 3,56 | 15 | .'19 |          |           |           |           |           |
| Mmax         Mmax         9.06         11,45         14,91         18,05         13,50         13,74         23,02         27,78         23,53           Mmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mmax         Mmax         9.06         11,45         14,91         18,05         13,50         17,62         19,74         23,60         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         23,60         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mmax         Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mmax         Mmax         11,45         14,91         18,05         13,50         17,62         19,74         24,78         27,78           Mma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |           |   |     |           |           |           |          |      |     | 17, |               | _         |           |           | 20,13     | _         |               | _             | 0,34 | 22 | ,78  |          |           |           |           |           |
| Mmax         Mmax         30,21         25,31         31,32         36,09         34,57         28,91         31,64         35,44         35,44         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         35,74         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mmax         Mmax         30,21         25,31         31,32         36,09         34,57         28,91         31,64         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         35,41         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           | 90'6      |           |           | _         |               |               |      |    |      |          |           | 6         |           |           |
| Mm         Mm<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           |   |     |           |           |           |          |      |     |     |               |           | 30,21     |           | 31,32     | _         |               | _             |      |    |      |          | 11 38,53  | 3         |           |           |
| Mmax         Mmax <th< th=""><th>Mmax         Mmax         M1,45         45,20         45,20         43,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         44,31         44,31         44,31         44,31         44,32         44,31         44,31         44,32         44,32         44,31         44,32         44,32         44,31         44,32         44,31         44,32         44,32         44,31         44,32         44,31         44,32         44,32         44,31         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>11,45</th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th>_</th><th>ıo</th><th></th><th></th></th<>                                                                                                                                                        | Mmax         Mmax         M1,45         45,20         45,20         43,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         36,21         39,82         45,30         44,31         44,31         44,31         44,31         44,32         44,31         44,31         44,32         44,32         44,31         44,32         44,32         44,31         44,32         44,31         44,32         44,32         44,31         44,32         44,31         44,32         44,32         44,31         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         44,32         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           | 11,45     |           |           |               | _             |      |    |      |          | _         | ıo        |           |           |
| Mmax         Mmax <th< th=""><th>Mn         Mn         36,23         45,18         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mn         Mn         Mn         45,20         45,18         52,08         49,88         41,72         45,66         51,09         51,13           Mn         Mn</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>31,70</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>9 48,26</th><th>9</th><th></th><th></th></th<>                                                                                                                                                                                                                                                                     | Mn         Mn         36,23         45,18         11,45         14,91         18,05         13,50         17,62         19,74         24,78         22,78           Mn         Mn         Mn         45,20         45,18         52,08         49,88         41,72         45,66         51,09         51,13           Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                          |           |   |     |           |           |           |          |      |     |     |               |           |           | 31,70     |           |           |               |               | _    |    |      |          | 9 48,26   | 9         |           |           |
| Mmax         Mmax         36,52         45,18         52,08         49,88         41,72         45,66         51,03         51,13         51,03         51,13         51,03         51,03         51,13         51,03         51,13         51,03         51,13         51,03         51,13         51,03         52,08         52,08         52,08         49,88         41,72         45,20         51,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         52,03         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mmax         Mmax         36,52         45,18         52,08         49,88         41,72         45,66         51,09         51,13           Mmax         Mmax         45,20         55,92         64,45         55,92         64,45         57,02         64,78         57,02         75,03         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09 </th <th></th> <th>11,45</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |           |   |     |           |           |           |          |      |     |     |               |           |           | 11,45     |           |           |               |               |      |    |      |          | _         |           |           |           |
| Mn         Mn         11,45         14,91         18,05         17,62         19,74         24,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78         25,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mn         Mn         H1,45         11,45         14,91         18,05         17,62         19,74         24,78         22,78           Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |           |   |     |           |           |           |          |      |     |     |               |           |           | 36,52     | 45,18     |           | _             | _             |      |    | _    | _        | 09'55 20  | 0 81,12   |           |           |
| Mmax         Mmax         45,20         64,45         51,63         56,16         36,28         63,16           Mm         Mmax         Mmax <t< th=""><th>Mmax         Mmax         Max         Max<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>11,45</th><th>_</th><th>18,05</th><th></th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th></th><th></th><th>70,24</th><th></th></th></t<>                                                                                                                                                                                                                    | Mmax         Mmax         Max         Max </th <th></th> <th>11,45</th> <th>_</th> <th>18,05</th> <th></th> <th>_</th> <th>_</th> <th>_</th> <th>_</th> <th>_</th> <th></th> <th></th> <th>70,24</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |           |   |     |           |           |           |          |      |     |     |               |           |           | 11,45     | _         | 18,05     |               | _             | _    | _  | _    | _        |           |           | 70,24     |           |
| Mn         Mn         17,62         19,74         24,78         25,78         25,76           Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mnmax         Mnmax         17,62         19,74         24,78         22,78           Mnmax         Mnmax         61,27         67,05         75,03         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,09         75,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |           |   |     |           |           |           |          |      |     |     |               |           |           | 45,20     | 55,92     | 64,45     |               | _             | _    |    | _    | _        | _         |           | 9 105,36  | ιo        |
| Mmax         Mmax <th< th=""><th>Mmax         Mmax         Mmax         61,27         67,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75</th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>58,90</td><td></td><td>87,41</td></th<>                                                                                                                                                      | Mmax         Mmax         Mmax         61,27         67,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75,03         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               | _    |    |      |          |           | 58,90     |           | 87,41     |
| Mn         Mn<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mmax         Mmax <th< th=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td>5 119,13</td><td>3 125,03</td><td>3 121,56</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           | 1             |               | _    |    |      |          | _         | 5 119,13  | 3 125,03  | 3 121,56  |
| M <sub>max</sub> M <sub>max</sub> 101,05           M <sub>max</sub> M <sub>max</sub> 101,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mmax         Mmax <th< th=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25,</td><td>.26 28,5</td><td></td><td>58,90</td><td>71,08</td><td>88,50</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    | 25,  | .26 28,5 |           | 58,90     | 71,08     | 88,50     |
| $rac{M_{max}}{M_{max}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    | 101  | ,05 97,  | 7 110,09  | 160,63    | 3 168,58  | 8 163,90  |
| М <sub>тах</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    |      | 28,5     |           | 98'30     | 71,08     | 88,50     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    |      | 109,     | 31 123,85 | 180,71    | 1 189,65  | 5 184,38  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           | 71,08     | 88,50     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           | 252,87    | 7 245,84  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           | 1 |     |           | 1         |           |          | +    |     |     |               | 4         |           |           |           |           |               | 1             | +    | _  | _    | 4        | _         |           |           | 88,50     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |           |   |     |           |           |           |          |      |     |     |               |           |           |           |           |           |               |               |      |    |      |          |           |           |           | 307,30    |

0,00 |← Continuous torque 



ACU 400V ← BCR 400V

This table helps you to do mentative evaluation of motor and drive matches: for final dimensioning and selection of motor and drive please refer to servomotor ratings in relevant catalogue. A wide range of mechanical accessories is available for Active Cube Series frequency converters, to make installation extremely easy in all sorts of applications.

In standard mountings the unit can be installed directly on the mounting plate or through-the-wall. A vibration-proof mounting variant and a standard DIN bar mounting variant are also available.

The range of mounting variants also includes an optional support with shielded brackets, so that the right solution for all possible needs can always be found.

Installations are practically identical for all sizes, so the examples shown below can be taken as representative solutions and ideal for all installers seeking a mechanically simple, compact installation solution.

# Types of mounting kits

The drive is supplied complete with a standard installation kit for fixing to an electrical cabinet mounting panel.

3 different optional installation kits are available on request.

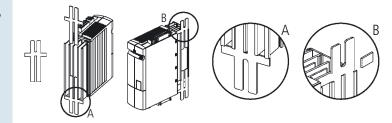
#### **MPSV**

Thru-type assembly for higher protection classes or enhanced cooling characteristics

#### **MNVIB**

Anti-vibration mounting for installations on machines that generate significant vibrational stress

#### **MDIN**


DIN rail assembly for fast and modular installation / coupling



# Mounting

## Size 1

Standard assembly



| Inverter BONFIGLIOLI                           | Mounting | Description            |
|------------------------------------------------|----------|------------------------|
|                                                | MPSV1    | Thru-type assembly     |
| ACU 201-01 ACU 201-09<br>ACU 401-01 ACU 401-11 | MNVIB1   | Antivibration assembly |
| ACO 401 01 ACO 401 11                          | MDIN1    | DIN rail assembly      |

### MPSV1

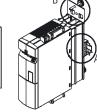




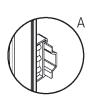




### **MNVIB1**






#### MDIN1

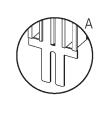








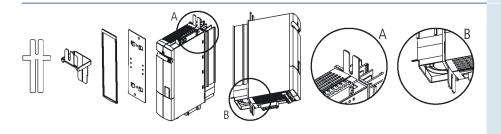




# Mounting

# **Active Cube**

61

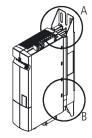




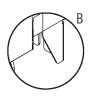



Standard assembly

Size 2

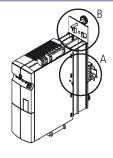

| Inverter BONFIGLIOLI                           | Mounting        | Description            |
|------------------------------------------------|-----------------|------------------------|
| A 5 11 20 4 4 4 4 5 11 20 4 4 5                | MPSV2           | Thru-type assembly     |
| ACU 201-11 ACU 201-15<br>ACU 401-12 ACU 401-18 | MNVIR2   Antivi | Antivibration assembly |
| ACO 401 12 ACO 401 10                          | MDIN2           | DIN rail assembly      |

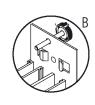


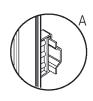

MPSV2






MNVIB2

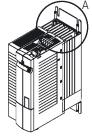








MDIN2



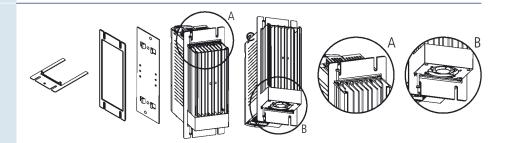

# Mounting

Size 3

Standard assembly












| Inverter BONFIGLIOLI  | Mounting | Description            |
|-----------------------|----------|------------------------|
| ACU 201-18 ACU 201-19 | MPSV3    | Thru-type assembly     |
| ACU 401-19 ACU 401-22 | MNVIB3   | Antivibration assembly |

## MPSV3

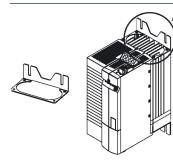














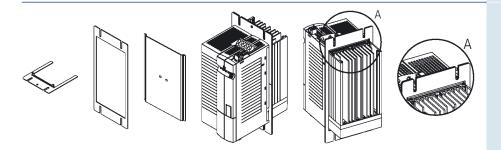

# Mounting

# **Active Cube**

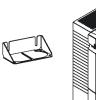
63











Standard assembly

Size 4

| Inverter BONFIGLIOLI  | Mounting | Description            |
|-----------------------|----------|------------------------|
| ACU 201-21 ACU 201-22 | MPSV4    | Thru-type assembly     |
| ACU 401-23 ACU 401-25 | MNVIB4   | Antivibration assembly |

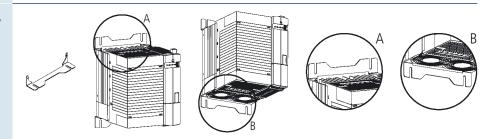


MPSV4












# Mounting

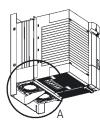

Size 5

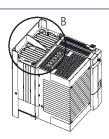
Standard assembly



| Inverter BONFIGLIOLI    | Mounting | Description            |  |  |
|-------------------------|----------|------------------------|--|--|
| ACII 401 27 ACII 401 21 | MPSV5    | Thru-type assembly     |  |  |
| ACU 401-27 ACU 401-31   | MNVIB5   | Antivibration assembly |  |  |

## MPSV5



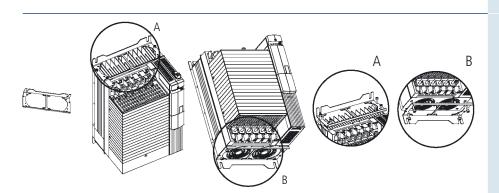








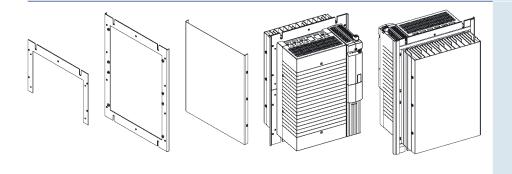


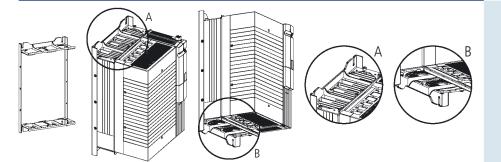





# Mounting


# **Active Cube**



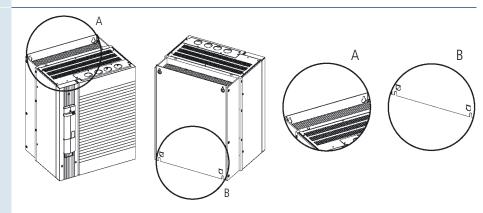

Standard assembly

Size 6

| Inverter BONFIGLIOLI    | Mounting | Description            |
|-------------------------|----------|------------------------|
| ACII 404 22 ACII 404 20 | MPSV6    | Thru-type assembly     |
| ACU 401-33 ACU 401-39   | MNVIB6   | Antivibration assembly |



MPSV6






# Mounting

# Size 7

Standard assembly



| Inverter BONFIGLIOLI | Mounting | Description        |  |  |
|----------------------|----------|--------------------|--|--|
| ACU 401-43ACU 401-49 | MPSV7    | Thru-type assembly |  |  |

### MPSV7









# Input filter

#### Why an input filter?

An Input Filter is a filtration device to be installed up-line from the frequency inverter and down-line from the power feeding contactor.

The AC/DC rectifier at the inverter input generates harmonic disturbance on the absorbed current and returns disturbance generated by switching components towards the mains. This harmonic current causes voltage distortions on the mains resulting in electromagnetic interference phenomena.

This harmonic distortion is reduced by means of line chokes, while disturbance is countered with EMI filters (attenuation of EMI voltages) such as those described below.

**Note:** The use of input filters reduces the inverter input voltage. If required, these filters should be installed up-line from the inverter in the following order:

- 1. Mains supply
- 2. Line choke
- 3. EMI filter
- 4. Inverter

#### Line choke

- Line chokes are not mandatory: their use depends on the system engineer's need to reduce harmonic distortion in the short circuit point, and the need to reinforce the action of the EMI filter. A line choke is normally used if the mains short circuit power is lower than 1%.
- A line choke is recommended for the ACU201 and ACU401 frequency inverter series in the presence of high continuous input current required by the application, in order to increase the lifetime of the electrolytic capacitors.
- A line choke is always required in single and two-phase operation of the ACU201 frequency inverters.

#### **EMI filter**

- An EMI filter can be used in order to achieve Class "A" (groups 1, 2) or Class "B" interference suppression
- The EMI filter is available in a low leakage current version for special applications.
- The EMI filter is part of the standard outfit in sizes of up to 4.0 kW and it is supplied as an optional for higher sizes in an internal (up to 7.5 kW) or external (above 7.5 kW) version.







# **Accessories**

# Input filter

ACTIVE CUBE inverter - Line choke / EMI filter combination

|                                     | Compliance with Class A<br>Group 2      |                                         | Compliance<br>Gro                      | with Class A<br>up 1                   | Compliance with Class B                |                                        |  |
|-------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|
| Motor Cable Length                  | < 10 m                                  | < max*                                  | < 10 m                                 | < max*                                 | < 10 m                                 | < max*                                 |  |
| ACU 1<br>(Standard internal filter) | Standard                                | external choke                          | external choke                         | external filter                        | external choke                         | external filter                        |  |
| ACU 2<br>(Standard internal filter) | Standard                                | external choke                          | external choke                         | external filter                        | external choke                         | external filter                        |  |
| ACU 3                               | internal filter<br>or<br>external choke | internal filter<br>or<br>external choke | internal filter<br>+<br>external choke | internal filter<br>+<br>external choke | internal filter<br>+<br>external choke | external filter                        |  |
| ACU 4                               | external choke                          | external filter                         | external filter                        | external filter                        | external filter                        | external filter<br>+<br>external choke |  |
| ACU 5                               | external choke                          | external choke                          | external filter                        | external filter                        | external filter                        | external filter<br>external choke      |  |
| ACU 6                               | external choke                          | external choke                          | external filter                        | external filter                        | external filter                        | external filter                        |  |
| ACU 7                               | external choke                          | external choke                          | external filter                        | external filter                        | _                                      | _                                      |  |

<sup>\*</sup> See the operation manual



## Line choke

The simplest way of reducing high harmonic components and hence reactive power is connecting a choke in series on the mains side of the inverter. Depending on the system, reactive power consumption can be reduced by approximately 20% of the figure without line choke.

The line choke increases inductance towards the mains. Mains feed line choke can be regarded as sufficient if short-circuit power is from 20 to 40 times higher than the inverter nominal output.

The inverter is suitable for connection to public or industrial mains supplies in compliance with technical data. If the supply mains transformer output is  $\leq 500$  kVA, the optional mains choke is needed only if specified in the inverter technical data. The other inverters are suitable for the connection to the mains without a mains choke with relative impedance  $\geq 1\%$ . If it is desired to connect more than one inverter, use the sum of the nominal outputs as a basis.

Since experience has shown that the nominal short circuit power on the inverter connection point is often unknown, BONFIGLIOLI recommends the use of mains chokes with 4% voltage drop.

The relative short circuit voltage equivalent to a 4% voltage drop represents the percentage of the nominal voltage at which a current equal to rated current flows in the case of a short circuit.

The European reference standard for harmonics is EN 60 555, while in the US and Canada systems must comply with standard IEEE 519 and various generic national regulations.

#### **Technical data**

#### **Nominal voltages**

230V +/- 10% 400V +/- 10%

#### **Frequencies**

50/60 Hz uk (a IN / 50 Hz) 4%

#### **Insulating material class**

T40/F

#### **Ambient temperature**

40°C

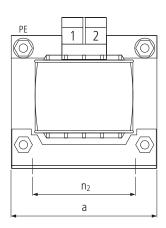
## **Protection class**

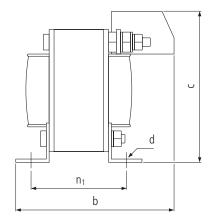
IP00 / VBG4

#### **Connection type**

Contact-protected terminals




**Note:** The line choke must be installed between the mains connection point and the EMI filter. Both the line choke and inverter should be installed on a common metal baseplate and each should be connected to the metal mounting plate and earthed by means of a large contact area copper braid.




# **Accessories**

# Line choke

### **Dimensions**





## **Technical data**

BONFIGLIOLI frequency inverter – Line choke combination, **1x230V~** 

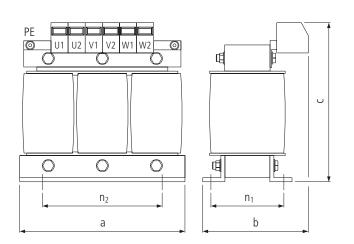
| BONFIGLIOLI |         | Nominal current | Power dissipation |  |  |
|-------------|---------|-----------------|-------------------|--|--|
| Inverter    | Choke   | [A]             | [W]               |  |  |
| ACU 201-01  |         |                 |                   |  |  |
| ACU 201-03  | LCVS006 | 6               | 8.0               |  |  |
| ACU 201-05  |         |                 |                   |  |  |
| ACU 201-07  | LCVS008 | 8               | 8.0               |  |  |
| ACU 201-09  | LCVS010 | 10              | 10.0              |  |  |
| ACU 201-11  | LCVS015 | 15              | 12.0              |  |  |
| ACU 201-13  | LCVS018 | 18              | 15.0              |  |  |

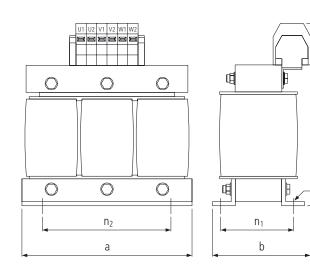
## Technical assembly data

|  |                   | D    | imensior | ıs   |                | Assembly       |      | Weight | Connection terminal |         |                     |
|--|-------------------|------|----------|------|----------------|----------------|------|--------|---------------------|---------|---------------------|
|  | BONFIGLIOLI Choke | a    | b        | С    | n <sub>2</sub> | n <sub>1</sub> | d    |        |                     |         |                     |
|  |                   | [mm] | [mm]     | [mm] | [mm]           | [mm]           | [mm] | [kg]   | [mm]                | [Nm]    | PE                  |
|  | LCVS006           | 60   | 62       | 75   | 44             | 38             | 3.6  | 0.5    | 0.75-2.5            | 1.0-1.2 | 2.5 mm <sup>2</sup> |
|  | LCVS008           | 60   | 67       | 75   | 44             | 43             | 3.6  | 0.6    | 0.75-2.5            | 1.0-1.2 | 2.5 mm <sup>2</sup> |
|  | LCVS010           | 66   | 80       | 70   | 50             | 51             | 4.8  | 0.8    | 0.75-2.5            | 1.0-1.2 | M4                  |
|  | LCVS015           | 78   | 78       | 80   | 56             | 49             | 4.8  | 1.1    | 0.75-4.0            | 1.5-1.8 | M4                  |
|  | LCVS018           | 85   | 85       | 95   | 64             | 50             | 4.8  | 1.8    | 0.75-4.0            | 1.5-1.8 | M4                  |



# **Accessories**


# **Active Cube** 71


# Line choke

**Dimensions** 

LCVT004 ... LCVT025







# BONFIGLIOLI frequency inverter – Line choke combination, **3x230V~**

# **Technical data**

| BONFIGLIOLI | BONFIGLIOLI | Nominal current | Choke | Power dissipation |
|-------------|-------------|-----------------|-------|-------------------|
| Inverter    | Choke       | [A]             | [mH]  | [W]               |
| ACU 201-01  |             |                 |       |                   |
| ACU 201-03  | LCVT004     | 4               | 7,32  | 20                |
| ACU 201-05  | LC V 1004   | 4               | 7,52  | 20                |
| ACU 201-07  |             |                 |       |                   |
| ACU 201-09  | LCVT006     | 6               | 4,88  | 25                |
| ACU 201-11  | LCVT008     | 8               | 3,66  | 30                |
| ACU 201-13  | LCVT010     | 10              | 2,93  | 30                |
| ACU 201-15  | LCVT015     | 15              | 1,95  | 45                |
| ACU 201-18  | LCVT018     | 18              | 1,63  | 70                |
| ACU 201-19  | LCVT025     | 25              | 1,17  | 70                |
| ACU 201-21  | LCVT024     | 34              | 0.96  | 85                |
| ACU 201-22  | LCVT034     | 54              | 0,86  | 00                |



# 72 Active Cube

# **Accessories**

# Line choke

**Technical data** 

BONFIGLIOLI frequency inverter — Line choke combination, 3x400V~

| BONFIGLIOLI | BONFIGLIOLI | Nominal current | Choke | Power dissipation |
|-------------|-------------|-----------------|-------|-------------------|
| Inverter    | Choke       | [A]             | [mH]  | [W]               |
| ACU 401-01  |             |                 |       |                   |
| ACU 401-03  |             |                 |       |                   |
| ACU 401-05  |             |                 |       |                   |
| ACU 401-07  | LCVT004     | 4               | 7,32  | 20                |
| ACU 401-09  |             |                 |       |                   |
| ACU 401-11  |             |                 |       |                   |
| ACU 401-12  |             |                 |       |                   |
| ACU 401-13  | LCVT006     | 6               | 4,88  | 25                |
| ACU 401-15  | LCVT008     | 8               | 3,66  | 30                |
| ACU 401-18  | LCVT010     | 10              | 2,93  | 30                |
| ACU 401-19  | LCVT015     | 15              | 1,95  | 45                |
| ACU 401-21  | LCVT018     | 18              | 1,63  | 70                |
| ACU 401-22  | LCVT025     | 25              | 1,17  | 70                |
| ACU 401-23  | LCVT025     | 25              | 0,86  | 85                |
| ACU 401-25  | LCVT034     | 34              | 0,86  | 85                |
| ACU 401-27  | LCVT050     | 50              | 0,59  | 100               |
| ACU 401-29  | LCVT060     | 60              | 0,49  | 100               |
| ACU 401-31  | LCV1000     |                 | 0,49  | 100               |
| ACU 401-33  | LCVT075     | 75              | 0,37  | 110               |
| ACU 401-35  | LCVT090     | 90              | 0,33  | 120               |
| ACU 401-37  | LCVT115     | 115             | 0,25  | 140               |
| ACU 401-39  | LCVT135     | 135             | 0,22  | 180               |
| ACU 401-43  | LCVT160     | 160             | 0,18  | 180               |
| ACU 401-45  | LCVT180     | 180             | 0,16  | 185               |
| ACU 401-47  | LCVT210     | 210             | 0,14  | 200               |
| ACU 401-49  | LCVT250     | 250             | 0,12  | 210               |

# **Technical assembly data**

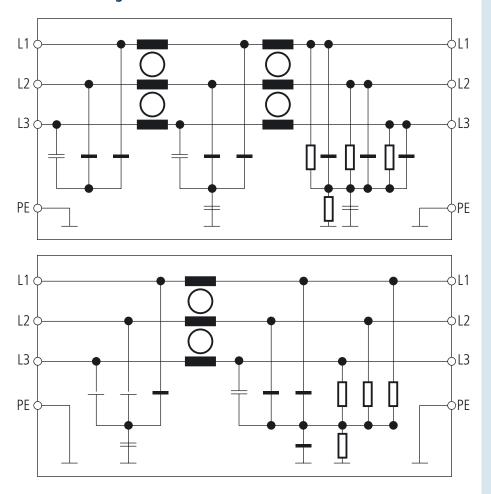
| DON'T GIVE           | D    | imensior | ıs   |                | Assembly       |      | Weight | Cor      | nection term | inal              |
|----------------------|------|----------|------|----------------|----------------|------|--------|----------|--------------|-------------------|
| BONFIGLIOLI<br>Choke | a    | b        | С    | n <sub>2</sub> | n <sub>1</sub> | d    |        |          |              |                   |
|                      | [mm] | [mm]     | [mm] | [mm]           | [mm]           | [mm] | [kg]   | [mm]     | [Nm]         | PE                |
| LCVT004              | 80   | 65       | 95   | 55             | 37             | 4    | 0,8    | 0,75-2,5 | 1,0-1,2      | 4 mm <sup>2</sup> |
| LCVT006              | 100  | 65       | 115  | 60             | 39             | 4    | 1,0    | 0,75-2,5 | 1,0-1,2      | 4 mm <sup>2</sup> |
| LCVT008              | 100  | 75       | 115  | 60             | 48             | 4    | 1,5    | 0,75-2,5 | 1,0-1,2      | 4 mm <sup>2</sup> |
| LCVT010              | 100  | 75       | 115  | 60             | 48             | 4    | 1,5    | 0,75-2,5 | 1,0-1,2      | 4 mm <sup>2</sup> |
| LCVT015              | 125  | 85       | 135  | 100            | 55             | 5    | 3,0    | 0,75-4,0 | 1,5-1,8      | 4 mm <sup>2</sup> |
| LCVT018              | 155  | 90       | 135  | 130            | 57             | 8    | 4,0    | 0,75-4,0 | 1,5-1,8      | 4 mm <sup>2</sup> |
| LCVT025              | 155  | 100      | 160  | 130            | 57             | 8    | 4,0    | 0,75-10  | 4,0-4,5      | 4 mm <sup>2</sup> |
| LCVT034              | 155  | 100      | 190  | 130            | 57             | 8    | 4,5    | 2,5-16   | 2,0-4,0      | M5                |
| LCVT050              | 155  | 115      | 190  | 130            | 72             | 8    | 4,5    | 2,5-16   | 2,0-4,0      | M5                |
| LCVT060              | 190  | 110      | 220  | 170            | 58             | 8    | 9,0    | 2,5-35   | 2,5-5,0      | M5                |
| LCVT075              | 190  | 120      | 250  | 170            | 68             | 8    | 12     | 25-50    | 3,0-6,0      | M6                |
| LCVT090              | 190  | 130      | 250  | 170            | 78             | 8    | 12     | 25-50    | 3,0-6,0      | M6                |
| LCVT115              | 210  | 140      | 270  | 180            | 82             | 8    | 14     | 25-50    | 3,0-6,0      | M6                |
| LCVT135              | 240  | 160      | 300  | 190            | 100            | 11   | 20     | 16-70    | 6,0-7,0      | M8                |
| LCVT160              | 240  | 160      | 310  | 190            | 100            | 11   | 20     | 50-95    | 6,0-12,0     | M8                |
| LCVT180              | 240  | 175      | 320  | 190            | 106            | 11   | 22     | 50-95    | 6,0-12,0     | M8                |
| LCVT210              | 240  | 200      | 335  | 190            | 121            | 11   | 26     | 95-150   | 10,0-20,0    | M8                |
| LCVT250              | 240  | 210      | 350  | 190            | 126            | 11   | 28     | 95-150   | 10,0-20,0    | M8                |



# **Active Cube**

# **EMI** filters

Because of their intrinsic characteristics, all frequency inverters often generate undesired high frequency voltages generally referred to as "interference". Mains filters are installed to reduce this interference.


Within the European Union reference standard EN EN61800-3 defines the thresholds for electromagnetic interference for different classes of equipment.

Active Series frequency inverters up to size 9.2 kW can be ordered with a built-in EMI filter conforming to the requirements of the standard for "class A – group 2" environments. Two series of external interference filters are available for larger size Active frequency inverters and for installations where conformity to the stricter requirements of class B is necessary. The two series differ both in construction and power range.

The first set of filters are "backplate filters or foot print". They are available in sizes 7 to 40 A (suitable for Active frequency inverters up to size 4), and allow the frequency inverter to be installed on board the filter itself. The second series of filters are "book filters". They cover all other Active sizes up to 130 A and are designed for installation on the same mounting panel alongside the drive.

Mains filters with very low dispersion currents are available upon request for specific applications.

# **Basic circuit diagram**





## 74

# **Active Cube**

# **Accessories**

# **Backplate EMI filters**



### Mains voltage

3 x 480V~ maximum +10%

## **Nominal current**

8A ... 40A

## Frequency

50/60 Hz

## Operating and storage temperature

-25 °C ... +100 °C (climate class acc. to CEI 25/100/21)

# **Ambient temperature**

+40°C maximum

## **Protection class**

IP00

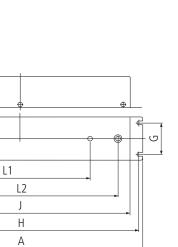
# **Connection type**

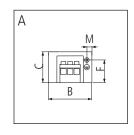
Contact-protected terminals

Strand connection on load side (only up to ACU 401-18) Metal fasteners are included in the supply

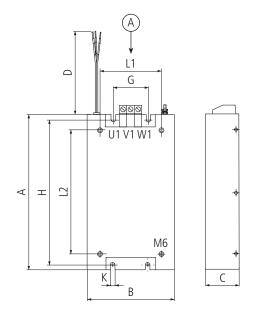
**Note:** These mains filters are installed between the line choke and the frequency inverter. The frequency inverter installed on the EMI filter must be connected to the metal baseplate with a short, large section earth connection.

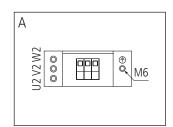
Overload capacity is 1.5 times rated current for 1 minute, every 30 minutes.


| BONFIG | GLIOLI Inverter |            | Rated<br>current | Leakage<br>current | Power dissipation | Weight |
|--------|-----------------|------------|------------------|--------------------|-------------------|--------|
| Size   | Туре            | EMI filter | [A]              | [mA]               | [W]               | [kg]   |
|        | ACU 201-01      |            |                  |                    |                   |        |
|        | ACU 201-03      |            |                  |                    |                   |        |
|        | ACU 201-05      |            |                  |                    |                   |        |
|        | ACU 201-07      | FTV007B    |                  |                    |                   |        |
|        | ACU 201-09      |            |                  |                    |                   |        |
| 1      | ACU 401-01      |            |                  |                    |                   |        |
|        | ACU 401-03      |            |                  |                    | 10                |        |
|        | ACU 401-05      |            | 8                | 5                  |                   | 1,5    |
|        | ACU 401-07      |            |                  | 3                  |                   | 1,5    |
|        | ACU 401-09      |            |                  |                    |                   |        |
|        | ACU 401-11      |            |                  |                    |                   |        |
|        | ACU 201-11      |            |                  |                    |                   |        |
|        | ACU 401-12      |            |                  |                    |                   |        |
| 2      | ACU 401-13      |            |                  |                    |                   |        |
|        | ACU 401-15      |            |                  |                    |                   |        |
|        | ACU 401-18      |            |                  |                    |                   |        |
| 3      | ACU 401-19      | FTV018B    | 18               | 1,5                | 20                | 3,5    |
|        | ACU 401-21      | טטוטאוו    | 10               | ۱,٦                | 20                | د,د    |
| 4      | ACU 401-23      | FTV040B    | 40               | 1,2                | 35                | 3,5    |
|        | ACU 401-25      | 1110400    | 40               | 1,2                | رر                | د,د    |




# **Accessories**


# Backplate EMI filters


# Dimensions FTV007B





| BONFIGLIOLI | A    | <b>B</b> | <b>C</b> | <b>D</b> | <b>E</b> | <b>F</b> | <b>G</b> | H       | <b>J</b> | <b>K</b> | <b>L1</b> | <b>L2</b> | <b>M</b> |
|-------------|------|----------|----------|----------|----------|----------|----------|---------|----------|----------|-----------|-----------|----------|
| EMI filter  | [mm] | [mm]     | [mm]     | [mm]     | [mm]     | [mm]     | [mm]     | [mm]    | [mm]     | [mm]     | [mm]      | [mm]      | [mm]     |
| FTV007B     | 351  | 62       | 45       | 200±10   | 160±10   | 33       | 45±0.2   | 340±0.3 | 315      | 5.5      | 240±0.2   | 280±0.2   |          |





Dimensions FTV018B - FTV040B

| BONFIGLIOLI<br>EMI filter | <b>A</b><br>[mm] | <b>B</b><br>[mm] | <b>C</b><br>[mm] | <b>D</b><br>[mm] | <b>G</b><br>[mm] | H<br>[mm] | <b>K</b><br>[mm] | <b>L1</b><br>[mm] | <b>L2</b><br>[mm] |
|---------------------------|------------------|------------------|------------------|------------------|------------------|-----------|------------------|-------------------|-------------------|
| FTV018B                   | 315              | 100              | 65               | 300              | 35               | 300       | 6.3              | 76                | 270               |
| FTV040B                   | 315              | 125              | 65               | 300              | 60               | 300       | 6.3              | 125               | 270               |



## 76

# **Active Cube**

# **Accessories**

# **Book type EMI filters**



**Note:** Overload capacity is 4 times rated current at switch-on; 1.5 times rated current for 1 minute, once per hour.

## **Technical specifications**

Mains voltage

3 x 480 VAC

**Rated current** 

7 A ... 130 A

Frequency

up to 60 Hz

Operating and storage temperature

-25 °C ... +80 °C (climate class acc. to CEI 25/80/21)

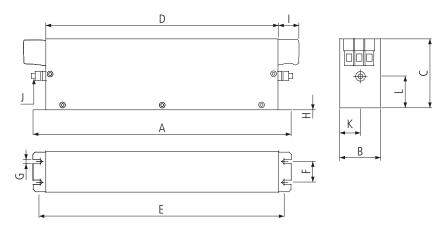
Type of protection

IP20

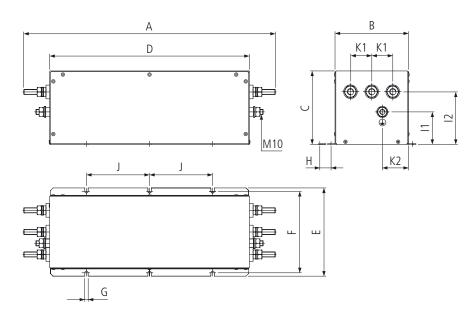
Maximum length of motor cables:

ACU 401-01 to ACU 401-15: 25 m class B ACU 401-18 to ACU 401-25: 50 m class B

ACU 401-27 to ACU 401-39: 10 m class B, 100 m class A group 1


ACU 401-43 to ACU 401-49: 10 m class B, 100 m class A group 1

| BONFIG | GLIOLI Inverter          | BONFIGLIOLI<br>EMI filter | Rated<br>current | Leakage<br>current | Power dissipation | Weight |
|--------|--------------------------|---------------------------|------------------|--------------------|-------------------|--------|
| Size   | Туре                     | EWII IIILER               | [A]              | [mA]               | [W]               | [kg]   |
|        | ACU 201-01               |                           |                  |                    |                   |        |
|        | ACU 201-03               |                           |                  |                    |                   |        |
|        | ACU 201-05               |                           |                  |                    |                   |        |
|        | ACU 201-07               |                           |                  |                    |                   |        |
| 1      | ACU 201-09               |                           |                  |                    |                   |        |
| 1      | ACU 401-01<br>ACU 401-03 |                           |                  |                    |                   |        |
|        | ACU 401-03<br>ACU 401-05 | FTV007A                   | 7                |                    | 3,8               | 0,5    |
|        | ACU 401-07               | 11007A                    | ,                |                    | 5,0               | 0,5    |
|        | ACU 401-09               |                           |                  |                    |                   |        |
|        | ACU 401-11               |                           |                  |                    |                   |        |
|        | ACU 201-11               |                           |                  |                    |                   |        |
|        | ACU 401-12               |                           |                  |                    |                   |        |
|        | ACU 401-13               |                           |                  |                    |                   |        |
| 2      | ACU 401-15               |                           |                  |                    |                   |        |
|        | ACU 201-13               |                           |                  |                    | 6.1               |        |
|        | ACU 201-15               | FT) (0.4.C.A              | 16               | 22                 |                   | 0.0    |
|        | ACU 401-18<br>ACU 401-19 | FTV016A                   |                  | 33                 | 6,1               | 0,8    |
|        | ACU 401-19<br>ACU 401-21 |                           |                  |                    | 11,8              |        |
| 3      | ACU 201-21               |                           |                  |                    |                   |        |
| 5      | ACU 201-19               |                           |                  |                    |                   |        |
|        | ACU 401-22               |                           |                  |                    |                   |        |
|        | ACU 201-21               | FTV030A                   | 30               |                    |                   | 1,2    |
| 4      | ACU 401-23               |                           |                  |                    |                   |        |
| 4      | ACU 401-25               |                           |                  |                    |                   |        |
|        | ACU 201-22               |                           |                  |                    |                   |        |
|        | ACU 401-27               | FTV055A                   | 55               |                    | 25,9              | 2,0    |
| 5      | ACU 401-29               |                           |                  |                    |                   |        |
|        | ACU 401-31               | FTV075A                   | 75               |                    | 32,2              | 2,7    |
|        | ACU 401-33<br>ACU 401-35 | FTV100A                   | 100              |                    | 34,5              | 4,3    |
| 6      | ACU 401-33<br>ACU 401-37 |                           |                  |                    |                   |        |
|        | ACU 401-39               | FTV130A                   | 130              |                    | 43,1              | 4,5    |
| -      | ACU 401-43<br>ACU 401-45 | FTV180A                   | 180              | 33                 | 58,3              | 6,0    |
| 7      | ACU 401-47<br>ACU 401-49 | FTV250A                   | 250              | 98                 | 90                | 12,4   |
|        | ACO 401 43               |                           |                  |                    |                   |        |




# Book type EMI filters

**Dimensions** FTV007A ... FTV180A



| BONFIGLIOLI<br>EMI filter | A<br>[mm] | <b>B</b><br>[mm] | <b>C</b><br>[mm] | <b>D</b><br>[mm] | <b>E</b><br>[mm] | <b>F</b><br>[mm] | <b>G</b><br>[mm] | H<br>[mm] | <b>I</b><br>[mm] | <b>J</b><br>[mm] | <b>K</b><br>[mm] | L<br>[mm] |
|---------------------------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|-----------|------------------|------------------|------------------|-----------|
| FTV007A                   | 190       | 40               | 70               | 160              | 180              | 20               | 4.5              | 1         | 22               | M5               | 20               | 29.5      |
| FTV016A                   | 250       | 45               | 70               | 220              | 235              | 25               | 5.4              | 1         | 22               | M5               | 22.5             | 29.5      |
| FTV030A                   | 270       | 50               | 85               | 240              | 255              | 30               | 5.4              | 1         | 25               | M5               | 25               | 39.5      |
| FTV055A                   | 250       | 85               | 90               | 220              | 235              | 60               | 5.4              | 1         | 39               | M6               | 42.5             | 26.5      |
| FTV075A                   | 270       | 80               | 135              | 240              | 255              | 60               | 6.5              | 1.5       | 39               | M6               | 40               | 70.5      |
| FTV100A                   | 270       | 90               | 150              | 240              | 255              | 65               | 6.5              | 1.5       | 45               | M10              | 45               | 64        |
| FTV130A                   | 270       | 90               | 150              | 240              | 255              | 65               | 6.5              | 1.5       | 45               | M10              | 45               | 64        |
| FTV180A                   | 380       | 120              | 170              | 350              | 365              | 102              | 6.5              | 1.5       | 49.5             | M10              | 60               | 47        |



# **Dimensions** FTV250A

| BONFIGLIOLI | A    | <b>B</b> | <b>C</b> | <b>D</b> | <b>E</b> | <b>F</b> | <b>G</b> | <b>H</b> | <b>I1</b> | <b>I2</b> | <b>J</b> | <b>K1</b> | <b>K2</b> |
|-------------|------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|
| EMI filter  | [mm] | [mm]     | [mm]     | [mm]     | [mm]     | [mm]     | [mm]     | [mm]     | [mm]      | [mm]      | [mm]     | [mm]      | [mm]      |
| FTV250A     | 482  | 140      | 140      | 380      | 168      | 155      | 6.5      | 1.5      | 62        | 100       | 120      | 40        | 50        |



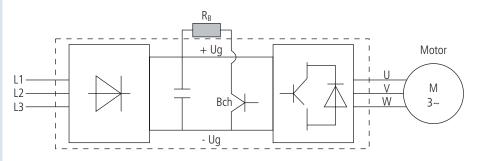
# **Active Cube**

# **Accessories**

# **Braking Resistors**



When speed of an inverter-controlled ac motor is reduced, the motor acts as a generator, feeding back energy to the frequency inverter. As a result, voltage in the intermediate circuit of the inverter increases. When a specific threshold is exceeded, the energy must flow to an external braking system in order to avoid drive failures. Braking resistors are designed to absorb such energy and to dissipate it into heating. The use of brake resistors allows drives to fulfil the requirements of particularly severe duty cycles, for example those featured by frequent braking, long lasting braking or impulsive braking.


Bonfiglioli Vectron offers a wide range of safe and compact braking resistors with IP20 degree of protection: "BR series".

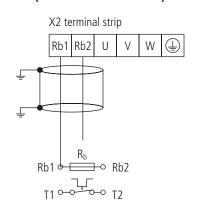
BR series are designed for panel mounting.

Mostly, they are equipped with built-in thermal protection.

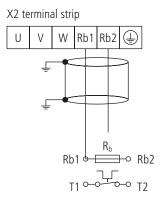
BR models have been thoroughly tested with Bonfiglioli frequency inverters, therefore they can be used together with all Active, Synplus, and VCB models.

# **Connection diagram**




 $R_B$  = external braking resistor

Bch = brake chopper integrated in standard ACTIVE inverter


### **Connection terminals**

The Rb1 and Rb2 braking resistor terminals on Active frequency inverters are located on the X2 power output terminal strip. Access to these terminals on size 1 and 2 units is made even easier by the use of disconnectable power terminal strips. Refer to the manual provided with your frequency inverter for further details on materials and connection methods.

# Frequency inverter (from 0.25 to 4.0 kW)



# Frequency inverter (from 5.5 to 132 kW)





# **Braking Resistors**

# **Active drive combination chart**

These charts show recommended combinations for each model in the Active range, and specify the corresponding duty cycles on the basis of rated drive power. Contact your nearest Bonfiglioli Drive Centre for particularly heavy-duty braking applications or if you need to customise a product.

| ACTIVE CUBE S | Series | Bonfiglioli         | Resistance | Continuous  | Duty cycle at the                     |
|---------------|--------|---------------------|------------|-------------|---------------------------------------|
|               | kW     | braking<br>resistor | Ohm        | rated power | Duty cycle at the drive's rated power |
| ACU 201-01    | 0,25   | BR 160/100          | 100        | 160         | 64%                                   |
| ACU 201-03    | 0,37   | BR 160/100          | 100        | 160         | 43%                                   |
| ACU 201-05    | 0,55   | BR 160/100          | 100        | 160         | 29%                                   |
| ACU 201-07    | 0,75   | BR 160/100          | 100        | 160         | 21%                                   |
| ACU 201-09    | 1,1    | BR 160/100          | 100        | 160         | 15%                                   |
| ACU 201-11    | 1,5    | BR 432/37           | 37         | 432         | 29%                                   |
| ACU 201-12    | 2,2    | BR 432/37           | 37         | 432         | 20%                                   |
| ACU 201-15    | 3      | BR 432/37           | 37         | 432         | 14%                                   |
| ACU 201-18    | 4      | BR 667/24           | 24         | 667         | 17%                                   |
| ACU 201-19    | 5,5    | BR 667/24           | 24         | 667         | 12%                                   |
| ACU 201-21    | 7,5    | BR 1333/12          | 12         | 1333        | 18%                                   |
| ACU 201-22    | 9,2    | BR 1333/12          | 12         | 1333        | 14%                                   |
| ACU 401-01    | 0,25   | BR 213/300          | 300        | 213         | 85%                                   |
| ACU 401-03    | 0,37   | BR 213/300          | 300        | 213         | 57%                                   |
| ACU 401-05    | 0,55   | BR 213/300          | 300        | 213         | 39%                                   |
| ACU 401-07    | 0,75   | BR 213/300          | 300        | 213         | 28%                                   |
| ACU 401-09    | 1,1    | BR 213/300          | 300        | 213         | 19%                                   |
| ACU 401-11    | 1,5    | BR 213/300          | 300        | 213         | 14%                                   |
| ACU 401-12    | 1,85   | BR 471/136          | 136        | 471         | 25%                                   |
| ACU 401-13    | 2,2    | BR 471/136          | 136        | 471         | 21%                                   |
| ACU 401-15    | 3      | BR 471/136          | 136        | 471         | 16%                                   |
| ACU 401-18    | 4      | BR 696/92           | 92         | 696         | 17%                                   |
| ACU 401-19    | 5,5    | BR 1330/48          | 48         | 1330        | 24%                                   |
| ACU 401-21    | 7,5    | BR 1330/48          | 48         | 1330        | 18%                                   |
| ACU 401-22    | 9,2    | BR 1330/48          | 48         | 1330        | 14%                                   |
| ACU 401-23    | 11     | BR 2000/32          | 32         | 2000        | 18%                                   |
| ACU 401-25    | 15     | BR 2000/32          | 32         | 2000        | 13%                                   |
| ACU 401-27    | 18,5   | BR 4000/16          | 16         | 4000        | 22%                                   |
| ACU 401-29    | 22     | BR 4000/16          | 16         | 4000        | 18%                                   |
| ACU 401-31    | 30     | BR 4000/16          | 16         | 4000        | 13%                                   |
| ACU 401-33    | 37     | BR 8000/7           | 7,5        | 8000        | 22%                                   |
| ACU 401-35    | 45     | BR 8000/7           | 7,5        | 8000        | 18%                                   |
| ACU 401-37    | 55     | BR 8000/7           | 7,5        | 8000        | 15%                                   |
| ACU 401-39    | 65     | BR 8000/7           | 7,5        | 8000        | 12%                                   |
| ACU 401-43    | 75     | BR8000/7            | 7,5        | 8000        | 11%                                   |
| ACU 401-45    | 90     | BR8000/7            | 7,5        | 8000        | 9%                                    |
| ACU 401-47    | 110    | 2xBR8000/7          | 3,75       | 16000       | 15%                                   |
| ACU 401-49    | 132    | 2xBR8000/7          | 3,75       | 16000       | 12%                                   |

#### Note:

For further information refer to the Bonfiglioli braking resistor catalogue.



# Worldwide



# Bonfiglioli is a Partner Worldwide for Power Transmission and Motion Control



he ever-growing export share has led Bonfiglioli into the most far away Countries. With expansion plans entailing a further growth of the sales network Bonfiglioli aims at improving both the competitiveness of its products and the effectiveness of the Customer service. In every market place Bonfiglioli is committed to improve the Customer satisfaction by offering state-of-the-art technology and shorter deliveries. Nowadays branch companies and BEST Partners bearing the Bonfiglioli name are operating in seventeen Countries outside Italy, with sales and service in the other countries managed by appointed dealers.

The domestic network is made up of 30 sales office and representatives and 100 dealers operating with their own warehouse and supporting Customers locally. Throughout the World Bonfiglioli's reputed know-how and Service quarantee effective and timely assistance.



# **Bonfiglioli Worldwide & BEST Partners**

# Worldwide

#### **AUSTRALIA**

BONFI<mark>GL</mark>IOLI TRANSMISSION (Aust) Pty Ltd. 2, Cox Place Glendenning NSW 2761, Australia Locked Bag 1000 Plumpton NSW 2761 Tel. (+ 61) 2 8811 8000 - Fax (+ 61) 2 9675 6605 www.bonfiglioli.com.au - sales@bonfiglioli.com.au

#### ALISTRIA PREST

MOLL MOTOR GmbH Industriestrasse 8 - 2000 Stockerau Tel. (+43) 2266 63421+DW - Fax (+43) 6342 180 www.mollmotor.at - office@mollmotor.at

#### BELGIUM PBEST

ESCO TRANSMISSION N.V./S.A. Culliganlaan 3 - 1831 Machelem Diegem Tel. (+32) 2 7176460 - Fax (+32) 2 7176461 www.esco-transmissions.be - info@esco-transmissions.be

ATI BRASIL

Rua Omlio Monteiro Soares, 260 - Vila Fanny - 81030-000 Tel. (+41) 334 2091 - Fax (+41) 332 8669 www.atibrasil.com.br - vendas@atibrasil.com.br

BONFIGLIOLI CANADA INC. 2-7941 Jane Street - Concord, Ontario L4K 4L6 Tel. (+1) 905 7384466 - Fax (+1) 905 7389833 www.bonfigliolicanada.com - sales@bonfigliolicanada.co

#### CHILE PREST

IMATESA S.A. Santa Rosa 5699 - San Miguel - Santiago Tel. (+56) 2 5264702 - Fax (+56) 2 5265878 www.imatesa.cl - imatesa@imatesa.cl

BONFIGLIOLI DRIVES (SHANGHAI) CO. LTD. 19D, No. 360 Pudong Road (S) New Shanghai International Tower - 200120 Shanghai - P.R. China Tel. (+86) 21 69225500 - Fax (+86) 21 69225511 www.bonfiglioli.cn - bds@bonfiglioli.com.cn

#### FRANCE

BONFIGLIOLI TRANSMISSIONS S.A. 14 Rue Eugène Pottier BP 19 Zone Industrielle de Moimont II - 95670 Marly la Ville Tel. (+33) 1 34474510 - Fax (+33) 1 34688800 www.bonfiglioli.fr - btf@bonfiglioli.fr

#### GERMANY

BONFIGLIOLI DEUTSCHLAND Gmbh Sperberweg 12 - 41468 Neuss Tel. (+49) 02131 2988-0 - Fax (+49) 02131 2988-100 www.bonfiglioli.de - info@bonfiglioli.de

## GREAT BRITAIN

BONFIGLIOLI UK Ltd North Moons Moat - Redditch. Worcestershire B98 9PB Tel. (+44) 1527 65022 - Fax (+44) 1527 61995 www.bonfiglioli.com - uksales@bonfiglioli-uk.com

### Mobile Equipment

5 Grosvenor Grange, Woolston, Warrington - Cheshire WA1 4SF Tel. (+44) 1925 852667 - Fax (+44) 1925 852668 www.bonfiglioli-uk.com - salesmobile@bonfiglioli-uk.com

### GREECE SEST

O.T. 48A T.O. 230 - C.P. 570 22, Industrial Area - Thessaloniki Tel. (+30) 2310 796456 - Fax (+30) 2310 795903 www.bonfiglioli.gr - info@bonfiglioli.gr

### HOLLAND BEST

ELSTO AANDRIJFTECHNIEK Loosterweg, 7 - 2215 TL Voorhout Tel. (+31) 252 219 123 - Fax (+31) 252 231 660 www.elsto.nl - info@elsto.nl

### HUNGARY *®best*

AGISYS AGITATORS & TRANSMISSIONS Ltd 2045 Törökbálint, Tö u.2. Hungary Tel. (+36) 23 50 11 50 - Fax (+36) 23 50 11 59 www.agisys.hu - info@agisys.hu

BONFIGLIOLI TRANSMISSIONS PVT Ltd. PLOT AC7-AC11 Sidco Industrial Estate - Thirumudivakkam - Chennai 600 044 Tel. +91(0) 44 24781035 / 24781036 / 24781037 Fax +91(0) 44 24780091 / 24781904 www.bonfiglioli.co.in - bonfig@vsnl.com

#### INDONESIA BEST

PT. ANEKAMAKMUR TEKNIK NUSAJAYA Pertokoan Glodok Makmur No. 32 - Jakarta Barat Tel. (+62) 21 624 8828 - Fax (+62) 21 624 2405 www.anekamakmur.com - sales@anekamakmur.com

BONFIGLIOLI ITALIA S.p.A. Via Sandro Pertini lotto 7b - 20080 Carpiano (Milano) Tel. (+39) 02 985081 - Fax (+39) 02 985085817 www.bonfiglioli.it - customerservice.italia@bonfiglioli.it

### NEW ZEALAND SEST

SAECO BEARINGS TRANSMISSION 36 Hastie Avenue, Mangere Po Box 22256, Otahuhu - Auckland Tel. (+64) 9 634 7540 - Fax (+64) 9 634 7552 mark@saeco.co.nz

#### OLAND SEST

POLPACK Sp. z o.o. - Ul. Chrobrego 135/137 - 87100 Torun Tel. (+48) 56 6559235 - 6559236 - Fax (+48) 56 6559238 www.polpack.com.pl - polpack@polpack.com.pl

#### PORTUGAL BEST

BT BONFITEC Equipamentos Industriais, Lda. Largo do Colegio de Ermesinde, 70 - Formiga 4445-382 Ermesinde Tel. (+351) 229759634/5/6 - Fax (+351) 229752211 www.bonfitec.pt - bonfitec@bonfitec.pt

FAM 57, Maly prospekt, V.O. - 199048, St. Petersburg Tel. (+7) 812 3319333 - Fax (+7) 812 3271454 www.fam-drive.ru - info@fam-drive.ru

TECNOTRANS BONFIGLIOLI S.A. Pol. Ind. Zona Franca sector C. calle F. n°6 08040 Barcelona Tel. (+34) 93 4478400 - Fax (+34) 93 3360402 www.tecnotrans.com - tecnotrans@tecnotrans.com

BONFIGLIOLI POWER TRANSMISSION Pty Ltd. 55 Galaxy Avenue, Linbro Business Park - Sandton Tel. (+27) 11 608 2030 OR - Fax (+27) 11 608 2631 ww.bonfiglioli.co.za - bonfigsales@bonfiglioli.co.za

## SOUTH KOREA BEST

YOUN HO INDUSTRIAL Room B1, World Plaza Bldg. 1262 Guro-Dong, Gurd-Gu, Seoul Tel. (+82) 2 626 43201 - Fax (+82) 2 263 23202 www.younho.com - younho@younho.com

#### SWEDEN

BONFIGLIOLI SKANDINAVIEN AB Koppargatan 8 - 234 35 Lomma, Sweden Tel. (+46) 40418230 - Fax (+46) 40414508 www.bonfiglioli.se - info@bonfiglioli.se

## THAILAND BEST

K.P.T MACHINERY (1993) CO.LTD. 259/83 Soi Phiboonves, Sukhumvit 71 Rd. Phrakanong-nur, Wattana, Bangkok 10110 Tel. (+66) 2 3913030/7111998 Fax (+66) 2 7112852/3811308/3814905 www.kpt-group.com - sales@kpt-group.com

BONFIGLIOLI TURKIYE Atatürk Organize Sanayi Bölgesi, 10015 Sk. No: 17, Çiğli - Izmii Tel. +90 (0) 232 328 22 77 (pbx) - Fax +90 (0) 232 328 04 14 www.bonfiglioli.com.tr - info@bonfiglioli.com.tr

BONFIGLIOLI USA, INC. 3541 Hargrave Drive Hebron, Kentucky 41048 Tel. (+1) 859 334 3333 - Fax (+1) 859 334 8888 www.bonfiglioliusa.com industrialsales@bonfiglioliusa.com - mobilesales@bonfiglioliusa.com

#### VENEZUELA SBEST

MAICA SOLUCIONES TECNICAS C.A. Calle 3B - Edif. Comindu - Planta Baja Local B - La Urbina - Caracas 1070 Tel. (+58) 212 2413570 / 2425268 / 2418263 Fax (+58) 212 2424552 - Tlx 24780 Maica V - maica1@cantv.net

### **HEADQUARTERS**

BONFIGLIOLI RIDUTTORI S.p.A. Via Giovanni XXIII, 7/A 40012 Lippo di Calderara di Reno Bologna (ITALY) Tel. (+39) 051 6473111 Fax (+39) 051 6473126 www.bonfiglioli.com bonfiglioli@bonfiglioli.com

## SPARE PARTS BONFIGLIOLI

Via Castagnini, 2-4 Z.I. Bargellino - 40012 Calderara di Reno - Bologna (ITALY) Tel. (+39) 051 727844 Fax (+39) 051 727066 www.brtbonfiglioliricambi.it brt@bonfiglioli.com



www.bonfiglioli.com

